Cargando…
Spatially Informed Cell Type Deconvolution for Spatial Transcriptomics
Many spatially resolved transcriptomic technologies do not have single-cell resolution but measure the average gene expression for each spot from a mixture of cells of potentially heterogeneous cell types. Here, we introduce a deconvolution method, conditional autoregressive deconvolution (CARD), th...
Autores principales: | Ma, Ying, Zhou, Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9464662/ https://www.ncbi.nlm.nih.gov/pubmed/35501392 http://dx.doi.org/10.1038/s41587-022-01273-7 |
Ejemplares similares
-
Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST
por: Long, Yahui, et al.
Publicado: (2023) -
SD(2): spatially resolved transcriptomics deconvolution through integration of dropout and spatial information
por: Li, Haoyang, et al.
Publicado: (2022) -
RETROFIT: Reference-free deconvolution of cell-type mixtures in spatial transcriptomics
por: Singh, Roopali, et al.
Publicado: (2023) -
SONAR enables cell type deconvolution with spatially weighted Poisson-Gamma model for spatial transcriptomics
por: Liu, Zhiyuan, et al.
Publicado: (2023) -
SpatialDWLS: accurate deconvolution of spatial transcriptomic data
por: Dong, Rui, et al.
Publicado: (2021)