Cargando…

Structural basis for FLCN RagC GAP activation in MiT-TFE substrate-selective mTORC1 regulation

The mechanistic target of rapamycin complex 1 (mTORC1) regulates cell growth and catabolism in response to nutrients through phosphorylation of key substrates. The tumor suppressor folliculin (FLCN) is a RagC/D guanosine triphosphatase (GTPase)–activating protein (GAP) that regulates mTORC1 phosphor...

Descripción completa

Detalles Bibliográficos
Autores principales: Jansen, Rachel M., Peruzzo, Roberta, Fromm, Simon A., Yokom, Adam L., Zoncu, Roberto, Hurley, James H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9473554/
https://www.ncbi.nlm.nih.gov/pubmed/36103527
http://dx.doi.org/10.1126/sciadv.add2926
_version_ 1784789528627642368
author Jansen, Rachel M.
Peruzzo, Roberta
Fromm, Simon A.
Yokom, Adam L.
Zoncu, Roberto
Hurley, James H.
author_facet Jansen, Rachel M.
Peruzzo, Roberta
Fromm, Simon A.
Yokom, Adam L.
Zoncu, Roberto
Hurley, James H.
author_sort Jansen, Rachel M.
collection PubMed
description The mechanistic target of rapamycin complex 1 (mTORC1) regulates cell growth and catabolism in response to nutrients through phosphorylation of key substrates. The tumor suppressor folliculin (FLCN) is a RagC/D guanosine triphosphatase (GTPase)–activating protein (GAP) that regulates mTORC1 phosphorylation of MiT-TFE transcription factors, controlling lysosome biogenesis and autophagy. We determined the cryo–electron microscopy structure of the active FLCN complex (AFC) containing FLCN, FNIP2, the N-terminal tail of SLC38A9, the RagA(GDP):RagC(GDP.BeFx-) GTPase dimer, and the Ragulator scaffold. Relative to the inactive lysosomal FLCN complex structure, FLCN reorients by 90°, breaks contact with RagA, and makes previously unseen contacts with RagC that position its Arg(164) finger for catalysis. Disruption of the AFC-specific interfaces of FLCN and FNIP2 with RagC eliminated GAP activity and led to nuclear retention of TFE3, with no effect on mTORC1 substrates S6K or 4E-BP1. The structure provides a basis for regulation of an mTORC1 substrate-specific pathway and a roadmap to discover MiT-TFE family selective mTORC1 antagonists.
format Online
Article
Text
id pubmed-9473554
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-94735542022-09-29 Structural basis for FLCN RagC GAP activation in MiT-TFE substrate-selective mTORC1 regulation Jansen, Rachel M. Peruzzo, Roberta Fromm, Simon A. Yokom, Adam L. Zoncu, Roberto Hurley, James H. Sci Adv Biomedicine and Life Sciences The mechanistic target of rapamycin complex 1 (mTORC1) regulates cell growth and catabolism in response to nutrients through phosphorylation of key substrates. The tumor suppressor folliculin (FLCN) is a RagC/D guanosine triphosphatase (GTPase)–activating protein (GAP) that regulates mTORC1 phosphorylation of MiT-TFE transcription factors, controlling lysosome biogenesis and autophagy. We determined the cryo–electron microscopy structure of the active FLCN complex (AFC) containing FLCN, FNIP2, the N-terminal tail of SLC38A9, the RagA(GDP):RagC(GDP.BeFx-) GTPase dimer, and the Ragulator scaffold. Relative to the inactive lysosomal FLCN complex structure, FLCN reorients by 90°, breaks contact with RagA, and makes previously unseen contacts with RagC that position its Arg(164) finger for catalysis. Disruption of the AFC-specific interfaces of FLCN and FNIP2 with RagC eliminated GAP activity and led to nuclear retention of TFE3, with no effect on mTORC1 substrates S6K or 4E-BP1. The structure provides a basis for regulation of an mTORC1 substrate-specific pathway and a roadmap to discover MiT-TFE family selective mTORC1 antagonists. American Association for the Advancement of Science 2022-09-14 /pmc/articles/PMC9473554/ /pubmed/36103527 http://dx.doi.org/10.1126/sciadv.add2926 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Biomedicine and Life Sciences
Jansen, Rachel M.
Peruzzo, Roberta
Fromm, Simon A.
Yokom, Adam L.
Zoncu, Roberto
Hurley, James H.
Structural basis for FLCN RagC GAP activation in MiT-TFE substrate-selective mTORC1 regulation
title Structural basis for FLCN RagC GAP activation in MiT-TFE substrate-selective mTORC1 regulation
title_full Structural basis for FLCN RagC GAP activation in MiT-TFE substrate-selective mTORC1 regulation
title_fullStr Structural basis for FLCN RagC GAP activation in MiT-TFE substrate-selective mTORC1 regulation
title_full_unstemmed Structural basis for FLCN RagC GAP activation in MiT-TFE substrate-selective mTORC1 regulation
title_short Structural basis for FLCN RagC GAP activation in MiT-TFE substrate-selective mTORC1 regulation
title_sort structural basis for flcn ragc gap activation in mit-tfe substrate-selective mtorc1 regulation
topic Biomedicine and Life Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9473554/
https://www.ncbi.nlm.nih.gov/pubmed/36103527
http://dx.doi.org/10.1126/sciadv.add2926
work_keys_str_mv AT jansenrachelm structuralbasisforflcnragcgapactivationinmittfesubstrateselectivemtorc1regulation
AT peruzzoroberta structuralbasisforflcnragcgapactivationinmittfesubstrateselectivemtorc1regulation
AT frommsimona structuralbasisforflcnragcgapactivationinmittfesubstrateselectivemtorc1regulation
AT yokomadaml structuralbasisforflcnragcgapactivationinmittfesubstrateselectivemtorc1regulation
AT zoncuroberto structuralbasisforflcnragcgapactivationinmittfesubstrateselectivemtorc1regulation
AT hurleyjamesh structuralbasisforflcnragcgapactivationinmittfesubstrateselectivemtorc1regulation