Cargando…

Evaluation of nanopore sequencing for epigenetic epidemiology: a comparison with DNA methylation microarrays

Most epigenetic epidemiology to date has utilized microarrays to identify positions in the genome where variation in DNA methylation is associated with environmental exposures or disease. However, these profile less than 3% of DNA methylation sites in the human genome, potentially missing affected l...

Descripción completa

Detalles Bibliográficos
Autores principales: Flynn, Robert, Washer, Sam, Jeffries, Aaron R, Andrayas, Alexandria, Shireby, Gemma, Kumari, Meena, Schalkwyk, Leonard C, Mill, Jonathan, Hannon, Eilis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9476619/
https://www.ncbi.nlm.nih.gov/pubmed/35567415
http://dx.doi.org/10.1093/hmg/ddac112
_version_ 1784790177817821184
author Flynn, Robert
Washer, Sam
Jeffries, Aaron R
Andrayas, Alexandria
Shireby, Gemma
Kumari, Meena
Schalkwyk, Leonard C
Mill, Jonathan
Hannon, Eilis
author_facet Flynn, Robert
Washer, Sam
Jeffries, Aaron R
Andrayas, Alexandria
Shireby, Gemma
Kumari, Meena
Schalkwyk, Leonard C
Mill, Jonathan
Hannon, Eilis
author_sort Flynn, Robert
collection PubMed
description Most epigenetic epidemiology to date has utilized microarrays to identify positions in the genome where variation in DNA methylation is associated with environmental exposures or disease. However, these profile less than 3% of DNA methylation sites in the human genome, potentially missing affected loci and preventing the discovery of disrupted biological pathways. Third generation sequencing technologies, including Nanopore sequencing, have the potential to revolutionize the generation of epigenetic data, not only by providing genuine genome-wide coverage but profiling epigenetic modifications direct from native DNA. Here we assess the viability of using Nanopore sequencing for epidemiology by performing a comparison with DNA methylation quantified using the most comprehensive microarray available, the Illumina EPIC array. We implemented a CRISPR-Cas9 targeted sequencing approach in concert with Nanopore sequencing to profile DNA methylation in three genomic regions to attempt to rediscover genomic positions that existing technologies have shown are differentially methylated in tobacco smokers. Using Nanopore sequencing reads, DNA methylation was quantified at 1779 CpGs across three regions, providing a finer resolution of DNA methylation patterns compared to the EPIC array. The correlation of estimated levels of DNA methylation between platforms was high. Furthermore, we identified 12 CpGs where hypomethylation was significantly associated with smoking status, including 10 within the AHRR gene. In summary, Nanopore sequencing is a valid option for identifying genomic loci where large differences in DNAm are associated with a phenotype and has the potential to advance our understanding of the role differential methylation plays in the etiology of complex disease.
format Online
Article
Text
id pubmed-9476619
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-94766192022-09-19 Evaluation of nanopore sequencing for epigenetic epidemiology: a comparison with DNA methylation microarrays Flynn, Robert Washer, Sam Jeffries, Aaron R Andrayas, Alexandria Shireby, Gemma Kumari, Meena Schalkwyk, Leonard C Mill, Jonathan Hannon, Eilis Hum Mol Genet Original Article Most epigenetic epidemiology to date has utilized microarrays to identify positions in the genome where variation in DNA methylation is associated with environmental exposures or disease. However, these profile less than 3% of DNA methylation sites in the human genome, potentially missing affected loci and preventing the discovery of disrupted biological pathways. Third generation sequencing technologies, including Nanopore sequencing, have the potential to revolutionize the generation of epigenetic data, not only by providing genuine genome-wide coverage but profiling epigenetic modifications direct from native DNA. Here we assess the viability of using Nanopore sequencing for epidemiology by performing a comparison with DNA methylation quantified using the most comprehensive microarray available, the Illumina EPIC array. We implemented a CRISPR-Cas9 targeted sequencing approach in concert with Nanopore sequencing to profile DNA methylation in three genomic regions to attempt to rediscover genomic positions that existing technologies have shown are differentially methylated in tobacco smokers. Using Nanopore sequencing reads, DNA methylation was quantified at 1779 CpGs across three regions, providing a finer resolution of DNA methylation patterns compared to the EPIC array. The correlation of estimated levels of DNA methylation between platforms was high. Furthermore, we identified 12 CpGs where hypomethylation was significantly associated with smoking status, including 10 within the AHRR gene. In summary, Nanopore sequencing is a valid option for identifying genomic loci where large differences in DNAm are associated with a phenotype and has the potential to advance our understanding of the role differential methylation plays in the etiology of complex disease. Oxford University Press 2022-05-14 /pmc/articles/PMC9476619/ /pubmed/35567415 http://dx.doi.org/10.1093/hmg/ddac112 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Flynn, Robert
Washer, Sam
Jeffries, Aaron R
Andrayas, Alexandria
Shireby, Gemma
Kumari, Meena
Schalkwyk, Leonard C
Mill, Jonathan
Hannon, Eilis
Evaluation of nanopore sequencing for epigenetic epidemiology: a comparison with DNA methylation microarrays
title Evaluation of nanopore sequencing for epigenetic epidemiology: a comparison with DNA methylation microarrays
title_full Evaluation of nanopore sequencing for epigenetic epidemiology: a comparison with DNA methylation microarrays
title_fullStr Evaluation of nanopore sequencing for epigenetic epidemiology: a comparison with DNA methylation microarrays
title_full_unstemmed Evaluation of nanopore sequencing for epigenetic epidemiology: a comparison with DNA methylation microarrays
title_short Evaluation of nanopore sequencing for epigenetic epidemiology: a comparison with DNA methylation microarrays
title_sort evaluation of nanopore sequencing for epigenetic epidemiology: a comparison with dna methylation microarrays
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9476619/
https://www.ncbi.nlm.nih.gov/pubmed/35567415
http://dx.doi.org/10.1093/hmg/ddac112
work_keys_str_mv AT flynnrobert evaluationofnanoporesequencingforepigeneticepidemiologyacomparisonwithdnamethylationmicroarrays
AT washersam evaluationofnanoporesequencingforepigeneticepidemiologyacomparisonwithdnamethylationmicroarrays
AT jeffriesaaronr evaluationofnanoporesequencingforepigeneticepidemiologyacomparisonwithdnamethylationmicroarrays
AT andrayasalexandria evaluationofnanoporesequencingforepigeneticepidemiologyacomparisonwithdnamethylationmicroarrays
AT shirebygemma evaluationofnanoporesequencingforepigeneticepidemiologyacomparisonwithdnamethylationmicroarrays
AT kumarimeena evaluationofnanoporesequencingforepigeneticepidemiologyacomparisonwithdnamethylationmicroarrays
AT schalkwykleonardc evaluationofnanoporesequencingforepigeneticepidemiologyacomparisonwithdnamethylationmicroarrays
AT milljonathan evaluationofnanoporesequencingforepigeneticepidemiologyacomparisonwithdnamethylationmicroarrays
AT hannoneilis evaluationofnanoporesequencingforepigeneticepidemiologyacomparisonwithdnamethylationmicroarrays