Cargando…
ASURAT: functional annotation-driven unsupervised clustering of single-cell transcriptomes
MOTIVATION: Single-cell RNA sequencing (scRNA-seq) analysis reveals heterogeneity and dynamic cell transitions. However, conventional gene-based analyses require intensive manual curation to interpret biological implications of computational results. Hence, a theory for efficiently annotating indivi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477531/ https://www.ncbi.nlm.nih.gov/pubmed/35924984 http://dx.doi.org/10.1093/bioinformatics/btac541 |