Cargando…
ASURAT: functional annotation-driven unsupervised clustering of single-cell transcriptomes
MOTIVATION: Single-cell RNA sequencing (scRNA-seq) analysis reveals heterogeneity and dynamic cell transitions. However, conventional gene-based analyses require intensive manual curation to interpret biological implications of computational results. Hence, a theory for efficiently annotating indivi...
Autores principales: | Iida, Keita, Kondo, Jumpei, Wibisana, Johannes Nicolaus, Inoue, Masahiro, Okada, Mariko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477531/ https://www.ncbi.nlm.nih.gov/pubmed/35924984 http://dx.doi.org/10.1093/bioinformatics/btac541 |
Ejemplares similares
-
Data-driven unsupervised clustering of online learner behaviour
por: Peach, Robert L., et al.
Publicado: (2019) -
Distinct but interchangeable subpopulations of colorectal cancer cells with different growth fates and drug sensitivity
por: Coppo, Roberto, et al.
Publicado: (2023) -
Cell Layers: uncovering clustering structure in unsupervised single-cell transcriptomic analysis
por: Blair, Andrew P, et al.
Publicado: (2022) -
Integrating Deep Supervised, Self-Supervised and Unsupervised Learning for Single-Cell RNA-seq Clustering and Annotation
por: Chen, Liang, et al.
Publicado: (2020) -
Unsupervised cell functional annotation for single-cell RNA-seq
por: Li, Dongshunyi, et al.
Publicado: (2022)