Cargando…

Overexpressed Thrombospondin 2 Induced Osteogenic Differentiation of Valve Interstitial Cells via Inhibition of Akt/NF-κB Signaling Pathway to Promote Calcific Aortic Valve Disease Development

Thrombospondin 2 (THBS2) is reported to participate in the development of calcific aortic valve disease (CAVD), while the effects are not elucidated completely. The study aimed to explore the role and mechanism of THBS2 in CAVD. Differentially expressed genes related to stenosis and sclerosis were s...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Cheng, Wu, Danna, Zhao, Chong, Wu, Chaoguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477632/
https://www.ncbi.nlm.nih.gov/pubmed/36118676
http://dx.doi.org/10.1155/2022/2022958
_version_ 1784790405128126464
author Yu, Cheng
Wu, Danna
Zhao, Chong
Wu, Chaoguang
author_facet Yu, Cheng
Wu, Danna
Zhao, Chong
Wu, Chaoguang
author_sort Yu, Cheng
collection PubMed
description Thrombospondin 2 (THBS2) is reported to participate in the development of calcific aortic valve disease (CAVD), while the effects are not elucidated completely. The study aimed to explore the role and mechanism of THBS2 in CAVD. Differentially expressed genes related to stenosis and sclerosis were screened through Limma package based on data from Gene Expression Omnibus (GEO), and the functional enrichment analysis was performed by the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. The immunoreactivity of THBS2 in CAVD and normal samples was detected through immunohistochemistry. Valve interstitial cells (VICs) were transfected with short hairpin RNA against THBS2 (shTHBS2) and THBS2 overexpression plasmid and treated with LY294002 (Akt inhibitor) and induced osteogenic differentiation. The expression of THBS2 in CAVD and normal samples and the levels of THBS2, osteocalcin, Runx2, SPARC, COL1A2, COL1A1, SPP1, CTGF, MMP-2, MMP-13, Akt, p-Akt, p65, p-p65, and nuclear p65 in VICs were tested by qRT-PCR and Western blot. ALP activity was assessed using colorimetry. Calcic nodule formation was measured by Alizarin Red staining. THBS2 and PI3K-Akt pathway were differentially enriched in stenosis samples when compared with those in sclerosis samples. THBS2 expression was upregulated in CAVD and positively correlated with ALP activity, calcic nodule formation, osteogenic differentiation-related (osteocalcin, Runx2, SPARC, COL1A2, COL1A1, SPP1, and CTGF) and extracellular matrix– (ECM–) related (MMP-2 and MMP-13) factors in the process of osteogenic differentiation. ShTHBS2 suppressed ALP activity, calcic nodule formation, and osteogenic differentiation/ECM-related molecules while upregulating p-Akt/Akt, p-p65/p65, and nuclear p65 expressions in VICs during osteogenic differentiation. However, THBS2 overexpression had the opposite effect to shTHBS2, and LY294002 reversed the effect of shTHBS2. Collectively, overexpressed THBS2 induces the osteogenic differentiation of VICs via inhibiting Akt/NF-κB pathway to promote the development of CAVD.
format Online
Article
Text
id pubmed-9477632
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-94776322022-09-16 Overexpressed Thrombospondin 2 Induced Osteogenic Differentiation of Valve Interstitial Cells via Inhibition of Akt/NF-κB Signaling Pathway to Promote Calcific Aortic Valve Disease Development Yu, Cheng Wu, Danna Zhao, Chong Wu, Chaoguang Dis Markers Research Article Thrombospondin 2 (THBS2) is reported to participate in the development of calcific aortic valve disease (CAVD), while the effects are not elucidated completely. The study aimed to explore the role and mechanism of THBS2 in CAVD. Differentially expressed genes related to stenosis and sclerosis were screened through Limma package based on data from Gene Expression Omnibus (GEO), and the functional enrichment analysis was performed by the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. The immunoreactivity of THBS2 in CAVD and normal samples was detected through immunohistochemistry. Valve interstitial cells (VICs) were transfected with short hairpin RNA against THBS2 (shTHBS2) and THBS2 overexpression plasmid and treated with LY294002 (Akt inhibitor) and induced osteogenic differentiation. The expression of THBS2 in CAVD and normal samples and the levels of THBS2, osteocalcin, Runx2, SPARC, COL1A2, COL1A1, SPP1, CTGF, MMP-2, MMP-13, Akt, p-Akt, p65, p-p65, and nuclear p65 in VICs were tested by qRT-PCR and Western blot. ALP activity was assessed using colorimetry. Calcic nodule formation was measured by Alizarin Red staining. THBS2 and PI3K-Akt pathway were differentially enriched in stenosis samples when compared with those in sclerosis samples. THBS2 expression was upregulated in CAVD and positively correlated with ALP activity, calcic nodule formation, osteogenic differentiation-related (osteocalcin, Runx2, SPARC, COL1A2, COL1A1, SPP1, and CTGF) and extracellular matrix– (ECM–) related (MMP-2 and MMP-13) factors in the process of osteogenic differentiation. ShTHBS2 suppressed ALP activity, calcic nodule formation, and osteogenic differentiation/ECM-related molecules while upregulating p-Akt/Akt, p-p65/p65, and nuclear p65 expressions in VICs during osteogenic differentiation. However, THBS2 overexpression had the opposite effect to shTHBS2, and LY294002 reversed the effect of shTHBS2. Collectively, overexpressed THBS2 induces the osteogenic differentiation of VICs via inhibiting Akt/NF-κB pathway to promote the development of CAVD. Hindawi 2022-09-08 /pmc/articles/PMC9477632/ /pubmed/36118676 http://dx.doi.org/10.1155/2022/2022958 Text en Copyright © 2022 Cheng Yu et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Yu, Cheng
Wu, Danna
Zhao, Chong
Wu, Chaoguang
Overexpressed Thrombospondin 2 Induced Osteogenic Differentiation of Valve Interstitial Cells via Inhibition of Akt/NF-κB Signaling Pathway to Promote Calcific Aortic Valve Disease Development
title Overexpressed Thrombospondin 2 Induced Osteogenic Differentiation of Valve Interstitial Cells via Inhibition of Akt/NF-κB Signaling Pathway to Promote Calcific Aortic Valve Disease Development
title_full Overexpressed Thrombospondin 2 Induced Osteogenic Differentiation of Valve Interstitial Cells via Inhibition of Akt/NF-κB Signaling Pathway to Promote Calcific Aortic Valve Disease Development
title_fullStr Overexpressed Thrombospondin 2 Induced Osteogenic Differentiation of Valve Interstitial Cells via Inhibition of Akt/NF-κB Signaling Pathway to Promote Calcific Aortic Valve Disease Development
title_full_unstemmed Overexpressed Thrombospondin 2 Induced Osteogenic Differentiation of Valve Interstitial Cells via Inhibition of Akt/NF-κB Signaling Pathway to Promote Calcific Aortic Valve Disease Development
title_short Overexpressed Thrombospondin 2 Induced Osteogenic Differentiation of Valve Interstitial Cells via Inhibition of Akt/NF-κB Signaling Pathway to Promote Calcific Aortic Valve Disease Development
title_sort overexpressed thrombospondin 2 induced osteogenic differentiation of valve interstitial cells via inhibition of akt/nf-κb signaling pathway to promote calcific aortic valve disease development
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477632/
https://www.ncbi.nlm.nih.gov/pubmed/36118676
http://dx.doi.org/10.1155/2022/2022958
work_keys_str_mv AT yucheng overexpressedthrombospondin2inducedosteogenicdifferentiationofvalveinterstitialcellsviainhibitionofaktnfkbsignalingpathwaytopromotecalcificaorticvalvediseasedevelopment
AT wudanna overexpressedthrombospondin2inducedosteogenicdifferentiationofvalveinterstitialcellsviainhibitionofaktnfkbsignalingpathwaytopromotecalcificaorticvalvediseasedevelopment
AT zhaochong overexpressedthrombospondin2inducedosteogenicdifferentiationofvalveinterstitialcellsviainhibitionofaktnfkbsignalingpathwaytopromotecalcificaorticvalvediseasedevelopment
AT wuchaoguang overexpressedthrombospondin2inducedosteogenicdifferentiationofvalveinterstitialcellsviainhibitionofaktnfkbsignalingpathwaytopromotecalcificaorticvalvediseasedevelopment