Cargando…
Autoprocessing and oxyanion loop reorganization upon GC373 and nirmatrelvir binding of monomeric SARS-CoV-2 main protease catalytic domain
The monomeric catalytic domain (residues 1–199) of SARS-CoV-2 main protease (MPro(1-199)) fused to 25 amino acids of its flanking nsp4 region mediates its autoprocessing at the nsp4-MPro(1-199) junction. We report the catalytic activity and the dissociation constants of MPro(1-199) and its analogs w...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481597/ https://www.ncbi.nlm.nih.gov/pubmed/36114420 http://dx.doi.org/10.1038/s42003-022-03910-y |
Sumario: | The monomeric catalytic domain (residues 1–199) of SARS-CoV-2 main protease (MPro(1-199)) fused to 25 amino acids of its flanking nsp4 region mediates its autoprocessing at the nsp4-MPro(1-199) junction. We report the catalytic activity and the dissociation constants of MPro(1-199) and its analogs with the covalent inhibitors GC373 and nirmatrelvir (NMV), and the estimated monomer-dimer equilibrium constants of these complexes. Mass spectrometry indicates the presence of the accumulated adduct of NMV bound to MPro(WT) and MPro(1-199) and not of GC373. A room temperature crystal structure reveals a native-like fold of the catalytic domain with an unwound oxyanion loop (E state). In contrast, the structure of a covalent complex of the catalytic domain-GC373 or NMV shows an oxyanion loop conformation (E* state) resembling the full-length mature dimer. These results suggest that the E-E* equilibrium modulates autoprocessing of the main protease when converting from a monomeric polyprotein precursor to the mature dimer. |
---|