Cargando…

Effects of a recombinant humanized anti‐cocaine monoclonal antibody on the metabolism and distribution of cocaine in vitro and in mice

The anti‐cocaine monoclonal antibody, h2E2, is a candidate for treating cocaine‐use disorder. h2E2 binds to and sequesters cocaine in the plasma compartment, effectively decreasing cocaine concentrations in the brains of rats and mice. Despite the binding of cocaine to h2E2, plasma cocaine concentra...

Descripción completa

Detalles Bibliográficos
Autores principales: Turner, Mackenzie E., Wetzel, Hanna N., Zinani, Dakota B., Crutchfield, Christopher A., Norman, Andrew B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484263/
https://www.ncbi.nlm.nih.gov/pubmed/36121122
http://dx.doi.org/10.1002/prp2.1009
_version_ 1784791845057855488
author Turner, Mackenzie E.
Wetzel, Hanna N.
Zinani, Dakota B.
Crutchfield, Christopher A.
Norman, Andrew B.
author_facet Turner, Mackenzie E.
Wetzel, Hanna N.
Zinani, Dakota B.
Crutchfield, Christopher A.
Norman, Andrew B.
author_sort Turner, Mackenzie E.
collection PubMed
description The anti‐cocaine monoclonal antibody, h2E2, is a candidate for treating cocaine‐use disorder. h2E2 binds to and sequesters cocaine in the plasma compartment, effectively decreasing cocaine concentrations in the brains of rats and mice. Despite the binding of cocaine to h2E2, plasma cocaine concentrations decline rapidly in rodents over time, but there was a drastic decrease in the urinary elimination of cocaine in the presence of h2E2. Since cocaine is not being renally excreted, the apparent disappearance of cocaine from the plasma must be explained by either metabolism or distribution. However, binding of cocaine to h2E2 may restrict the availability of cocaine for hydrolysis by endogenous esterases. Therefore, the antibody would be expected to extend the elimination half‐life of cocaine. In contrast, previous studies reported h2E2 as having no effect on the rate of cocaine clearance. It is important to examine the ultimate clearance of the cocaine to ascertain its half‐life and potential for re‐intoxication. Therefore, we investigated the effects of h2E2 on cocaine hydrolysis in vitro and on cocaine metabolism and disposition in vivo over a 6‐h time course. The spontaneous and enzyme‐mediated in vitro hydrolysis of cocaine was drastically decreased in the presence of h2E2 in vitro. Additionally, in mice, h2E2 significantly increased the distribution and elimination half‐lives of cocaine relative to vehicle controls over an extended time course. Therefore, we concluded that h2E2 slowing the distribution and elimination of cocaine is the most appropriate explanation for the initial disappearance of cocaine from the plasma in vivo.
format Online
Article
Text
id pubmed-9484263
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-94842632022-09-29 Effects of a recombinant humanized anti‐cocaine monoclonal antibody on the metabolism and distribution of cocaine in vitro and in mice Turner, Mackenzie E. Wetzel, Hanna N. Zinani, Dakota B. Crutchfield, Christopher A. Norman, Andrew B. Pharmacol Res Perspect Invited Reviews The anti‐cocaine monoclonal antibody, h2E2, is a candidate for treating cocaine‐use disorder. h2E2 binds to and sequesters cocaine in the plasma compartment, effectively decreasing cocaine concentrations in the brains of rats and mice. Despite the binding of cocaine to h2E2, plasma cocaine concentrations decline rapidly in rodents over time, but there was a drastic decrease in the urinary elimination of cocaine in the presence of h2E2. Since cocaine is not being renally excreted, the apparent disappearance of cocaine from the plasma must be explained by either metabolism or distribution. However, binding of cocaine to h2E2 may restrict the availability of cocaine for hydrolysis by endogenous esterases. Therefore, the antibody would be expected to extend the elimination half‐life of cocaine. In contrast, previous studies reported h2E2 as having no effect on the rate of cocaine clearance. It is important to examine the ultimate clearance of the cocaine to ascertain its half‐life and potential for re‐intoxication. Therefore, we investigated the effects of h2E2 on cocaine hydrolysis in vitro and on cocaine metabolism and disposition in vivo over a 6‐h time course. The spontaneous and enzyme‐mediated in vitro hydrolysis of cocaine was drastically decreased in the presence of h2E2 in vitro. Additionally, in mice, h2E2 significantly increased the distribution and elimination half‐lives of cocaine relative to vehicle controls over an extended time course. Therefore, we concluded that h2E2 slowing the distribution and elimination of cocaine is the most appropriate explanation for the initial disappearance of cocaine from the plasma in vivo. John Wiley and Sons Inc. 2022-09-19 /pmc/articles/PMC9484263/ /pubmed/36121122 http://dx.doi.org/10.1002/prp2.1009 Text en © 2022 The Authors. Pharmacology Research & Perspectives published by British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Invited Reviews
Turner, Mackenzie E.
Wetzel, Hanna N.
Zinani, Dakota B.
Crutchfield, Christopher A.
Norman, Andrew B.
Effects of a recombinant humanized anti‐cocaine monoclonal antibody on the metabolism and distribution of cocaine in vitro and in mice
title Effects of a recombinant humanized anti‐cocaine monoclonal antibody on the metabolism and distribution of cocaine in vitro and in mice
title_full Effects of a recombinant humanized anti‐cocaine monoclonal antibody on the metabolism and distribution of cocaine in vitro and in mice
title_fullStr Effects of a recombinant humanized anti‐cocaine monoclonal antibody on the metabolism and distribution of cocaine in vitro and in mice
title_full_unstemmed Effects of a recombinant humanized anti‐cocaine monoclonal antibody on the metabolism and distribution of cocaine in vitro and in mice
title_short Effects of a recombinant humanized anti‐cocaine monoclonal antibody on the metabolism and distribution of cocaine in vitro and in mice
title_sort effects of a recombinant humanized anti‐cocaine monoclonal antibody on the metabolism and distribution of cocaine in vitro and in mice
topic Invited Reviews
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484263/
https://www.ncbi.nlm.nih.gov/pubmed/36121122
http://dx.doi.org/10.1002/prp2.1009
work_keys_str_mv AT turnermackenziee effectsofarecombinanthumanizedanticocainemonoclonalantibodyonthemetabolismanddistributionofcocaineinvitroandinmice
AT wetzelhannan effectsofarecombinanthumanizedanticocainemonoclonalantibodyonthemetabolismanddistributionofcocaineinvitroandinmice
AT zinanidakotab effectsofarecombinanthumanizedanticocainemonoclonalantibodyonthemetabolismanddistributionofcocaineinvitroandinmice
AT crutchfieldchristophera effectsofarecombinanthumanizedanticocainemonoclonalantibodyonthemetabolismanddistributionofcocaineinvitroandinmice
AT normanandrewb effectsofarecombinanthumanizedanticocainemonoclonalantibodyonthemetabolismanddistributionofcocaineinvitroandinmice