Cargando…
A Pragmatic, Data-Driven Method to Determine Cutoffs for CSF Biomarkers of Alzheimer Disease Based on Validation Against PET Imaging
BACKGROUND AND OBJECTIVES: To elaborate a new algorithm to establish a standardized method to define cutoffs for CSF biomarkers of Alzheimer disease (AD) by validating the algorithm against CSF classification derived from PET imaging. METHODS: Low and high levels of CSF phosphorylated tau were first...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484605/ https://www.ncbi.nlm.nih.gov/pubmed/35970577 http://dx.doi.org/10.1212/WNL.0000000000200735 |
_version_ | 1784791908715855872 |
---|---|
author | Dumurgier, Julien Sabia, Séverine Zetterberg, Henrik Teunissen, Charlotte E. Hanseeuw, Bernard Orellana, Adelina Schraen, Susanna Gabelle, Audrey Boada, Mercè Lebouvier, Thibaud Willemse, Eline A.J. Cognat, Emmanuel Ruiz, Agustin Hourregue, Claire Lilamand, Matthieu Bouaziz-Amar, Elodie Laplanche, Jean-Louis Lehmann, Sylvain Pasquier, Florence Scheltens, Philip Blennow, Kaj Singh-Manoux, Archana Paquet, Claire |
author_facet | Dumurgier, Julien Sabia, Séverine Zetterberg, Henrik Teunissen, Charlotte E. Hanseeuw, Bernard Orellana, Adelina Schraen, Susanna Gabelle, Audrey Boada, Mercè Lebouvier, Thibaud Willemse, Eline A.J. Cognat, Emmanuel Ruiz, Agustin Hourregue, Claire Lilamand, Matthieu Bouaziz-Amar, Elodie Laplanche, Jean-Louis Lehmann, Sylvain Pasquier, Florence Scheltens, Philip Blennow, Kaj Singh-Manoux, Archana Paquet, Claire |
author_sort | Dumurgier, Julien |
collection | PubMed |
description | BACKGROUND AND OBJECTIVES: To elaborate a new algorithm to establish a standardized method to define cutoffs for CSF biomarkers of Alzheimer disease (AD) by validating the algorithm against CSF classification derived from PET imaging. METHODS: Low and high levels of CSF phosphorylated tau were first identified to establish optimal cutoffs for CSF β-amyloid (Aβ) peptide biomarkers. These Aβ cutoffs were then used to determine cutoffs for CSF tau and phosphorylated tau markers. We compared this algorithm to a reference method, based on tau and amyloid PET imaging status (ADNI study), and then applied the algorithm to 10 large clinical cohorts of patients. RESULTS: A total of 6,922 patients with CSF biomarker data were included (mean [SD] age: 70.6 [8.5] years, 51.0% women). In the ADNI study population (n = 497), the agreement between classification based on our algorithm and the one based on amyloid/tau PET imaging was high, with Cohen's kappa coefficient between 0.87 and 0.99. Applying the algorithm to 10 large cohorts of patients (n = 6,425), the proportion of persons with AD ranged from 25.9% to 43.5%. DISCUSSION: The proposed novel, pragmatic method to determine CSF biomarker cutoffs for AD does not require assessment of other biomarkers or assumptions concerning the clinical diagnosis of patients. Use of this standardized algorithm is likely to reduce heterogeneity in AD classification. |
format | Online Article Text |
id | pubmed-9484605 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Lippincott Williams & Wilkins |
record_format | MEDLINE/PubMed |
spelling | pubmed-94846052022-09-20 A Pragmatic, Data-Driven Method to Determine Cutoffs for CSF Biomarkers of Alzheimer Disease Based on Validation Against PET Imaging Dumurgier, Julien Sabia, Séverine Zetterberg, Henrik Teunissen, Charlotte E. Hanseeuw, Bernard Orellana, Adelina Schraen, Susanna Gabelle, Audrey Boada, Mercè Lebouvier, Thibaud Willemse, Eline A.J. Cognat, Emmanuel Ruiz, Agustin Hourregue, Claire Lilamand, Matthieu Bouaziz-Amar, Elodie Laplanche, Jean-Louis Lehmann, Sylvain Pasquier, Florence Scheltens, Philip Blennow, Kaj Singh-Manoux, Archana Paquet, Claire Neurology Research Articles BACKGROUND AND OBJECTIVES: To elaborate a new algorithm to establish a standardized method to define cutoffs for CSF biomarkers of Alzheimer disease (AD) by validating the algorithm against CSF classification derived from PET imaging. METHODS: Low and high levels of CSF phosphorylated tau were first identified to establish optimal cutoffs for CSF β-amyloid (Aβ) peptide biomarkers. These Aβ cutoffs were then used to determine cutoffs for CSF tau and phosphorylated tau markers. We compared this algorithm to a reference method, based on tau and amyloid PET imaging status (ADNI study), and then applied the algorithm to 10 large clinical cohorts of patients. RESULTS: A total of 6,922 patients with CSF biomarker data were included (mean [SD] age: 70.6 [8.5] years, 51.0% women). In the ADNI study population (n = 497), the agreement between classification based on our algorithm and the one based on amyloid/tau PET imaging was high, with Cohen's kappa coefficient between 0.87 and 0.99. Applying the algorithm to 10 large cohorts of patients (n = 6,425), the proportion of persons with AD ranged from 25.9% to 43.5%. DISCUSSION: The proposed novel, pragmatic method to determine CSF biomarker cutoffs for AD does not require assessment of other biomarkers or assumptions concerning the clinical diagnosis of patients. Use of this standardized algorithm is likely to reduce heterogeneity in AD classification. Lippincott Williams & Wilkins 2022-08-16 /pmc/articles/PMC9484605/ /pubmed/35970577 http://dx.doi.org/10.1212/WNL.0000000000200735 Text en Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. |
spellingShingle | Research Articles Dumurgier, Julien Sabia, Séverine Zetterberg, Henrik Teunissen, Charlotte E. Hanseeuw, Bernard Orellana, Adelina Schraen, Susanna Gabelle, Audrey Boada, Mercè Lebouvier, Thibaud Willemse, Eline A.J. Cognat, Emmanuel Ruiz, Agustin Hourregue, Claire Lilamand, Matthieu Bouaziz-Amar, Elodie Laplanche, Jean-Louis Lehmann, Sylvain Pasquier, Florence Scheltens, Philip Blennow, Kaj Singh-Manoux, Archana Paquet, Claire A Pragmatic, Data-Driven Method to Determine Cutoffs for CSF Biomarkers of Alzheimer Disease Based on Validation Against PET Imaging |
title | A Pragmatic, Data-Driven Method to Determine Cutoffs for CSF Biomarkers of Alzheimer Disease Based on Validation Against PET Imaging |
title_full | A Pragmatic, Data-Driven Method to Determine Cutoffs for CSF Biomarkers of Alzheimer Disease Based on Validation Against PET Imaging |
title_fullStr | A Pragmatic, Data-Driven Method to Determine Cutoffs for CSF Biomarkers of Alzheimer Disease Based on Validation Against PET Imaging |
title_full_unstemmed | A Pragmatic, Data-Driven Method to Determine Cutoffs for CSF Biomarkers of Alzheimer Disease Based on Validation Against PET Imaging |
title_short | A Pragmatic, Data-Driven Method to Determine Cutoffs for CSF Biomarkers of Alzheimer Disease Based on Validation Against PET Imaging |
title_sort | pragmatic, data-driven method to determine cutoffs for csf biomarkers of alzheimer disease based on validation against pet imaging |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484605/ https://www.ncbi.nlm.nih.gov/pubmed/35970577 http://dx.doi.org/10.1212/WNL.0000000000200735 |
work_keys_str_mv | AT dumurgierjulien apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT sabiaseverine apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT zetterberghenrik apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT teunissencharlottee apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT hanseeuwbernard apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT orellanaadelina apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT schraensusanna apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT gabelleaudrey apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT boadamerce apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT lebouvierthibaud apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT willemseelineaj apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT cognatemmanuel apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT ruizagustin apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT hourregueclaire apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT lilamandmatthieu apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT bouazizamarelodie apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT laplanchejeanlouis apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT lehmannsylvain apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT pasquierflorence apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT scheltensphilip apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT blennowkaj apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT singhmanouxarchana apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT paquetclaire apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT dumurgierjulien pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT sabiaseverine pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT zetterberghenrik pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT teunissencharlottee pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT hanseeuwbernard pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT orellanaadelina pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT schraensusanna pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT gabelleaudrey pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT boadamerce pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT lebouvierthibaud pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT willemseelineaj pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT cognatemmanuel pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT ruizagustin pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT hourregueclaire pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT lilamandmatthieu pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT bouazizamarelodie pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT laplanchejeanlouis pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT lehmannsylvain pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT pasquierflorence pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT scheltensphilip pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT blennowkaj pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT singhmanouxarchana pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT paquetclaire pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging AT pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging |