Cargando…

A Pragmatic, Data-Driven Method to Determine Cutoffs for CSF Biomarkers of Alzheimer Disease Based on Validation Against PET Imaging

BACKGROUND AND OBJECTIVES: To elaborate a new algorithm to establish a standardized method to define cutoffs for CSF biomarkers of Alzheimer disease (AD) by validating the algorithm against CSF classification derived from PET imaging. METHODS: Low and high levels of CSF phosphorylated tau were first...

Descripción completa

Detalles Bibliográficos
Autores principales: Dumurgier, Julien, Sabia, Séverine, Zetterberg, Henrik, Teunissen, Charlotte E., Hanseeuw, Bernard, Orellana, Adelina, Schraen, Susanna, Gabelle, Audrey, Boada, Mercè, Lebouvier, Thibaud, Willemse, Eline A.J., Cognat, Emmanuel, Ruiz, Agustin, Hourregue, Claire, Lilamand, Matthieu, Bouaziz-Amar, Elodie, Laplanche, Jean-Louis, Lehmann, Sylvain, Pasquier, Florence, Scheltens, Philip, Blennow, Kaj, Singh-Manoux, Archana, Paquet, Claire
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484605/
https://www.ncbi.nlm.nih.gov/pubmed/35970577
http://dx.doi.org/10.1212/WNL.0000000000200735
_version_ 1784791908715855872
author Dumurgier, Julien
Sabia, Séverine
Zetterberg, Henrik
Teunissen, Charlotte E.
Hanseeuw, Bernard
Orellana, Adelina
Schraen, Susanna
Gabelle, Audrey
Boada, Mercè
Lebouvier, Thibaud
Willemse, Eline A.J.
Cognat, Emmanuel
Ruiz, Agustin
Hourregue, Claire
Lilamand, Matthieu
Bouaziz-Amar, Elodie
Laplanche, Jean-Louis
Lehmann, Sylvain
Pasquier, Florence
Scheltens, Philip
Blennow, Kaj
Singh-Manoux, Archana
Paquet, Claire
author_facet Dumurgier, Julien
Sabia, Séverine
Zetterberg, Henrik
Teunissen, Charlotte E.
Hanseeuw, Bernard
Orellana, Adelina
Schraen, Susanna
Gabelle, Audrey
Boada, Mercè
Lebouvier, Thibaud
Willemse, Eline A.J.
Cognat, Emmanuel
Ruiz, Agustin
Hourregue, Claire
Lilamand, Matthieu
Bouaziz-Amar, Elodie
Laplanche, Jean-Louis
Lehmann, Sylvain
Pasquier, Florence
Scheltens, Philip
Blennow, Kaj
Singh-Manoux, Archana
Paquet, Claire
author_sort Dumurgier, Julien
collection PubMed
description BACKGROUND AND OBJECTIVES: To elaborate a new algorithm to establish a standardized method to define cutoffs for CSF biomarkers of Alzheimer disease (AD) by validating the algorithm against CSF classification derived from PET imaging. METHODS: Low and high levels of CSF phosphorylated tau were first identified to establish optimal cutoffs for CSF β-amyloid (Aβ) peptide biomarkers. These Aβ cutoffs were then used to determine cutoffs for CSF tau and phosphorylated tau markers. We compared this algorithm to a reference method, based on tau and amyloid PET imaging status (ADNI study), and then applied the algorithm to 10 large clinical cohorts of patients. RESULTS: A total of 6,922 patients with CSF biomarker data were included (mean [SD] age: 70.6 [8.5] years, 51.0% women). In the ADNI study population (n = 497), the agreement between classification based on our algorithm and the one based on amyloid/tau PET imaging was high, with Cohen's kappa coefficient between 0.87 and 0.99. Applying the algorithm to 10 large cohorts of patients (n = 6,425), the proportion of persons with AD ranged from 25.9% to 43.5%. DISCUSSION: The proposed novel, pragmatic method to determine CSF biomarker cutoffs for AD does not require assessment of other biomarkers or assumptions concerning the clinical diagnosis of patients. Use of this standardized algorithm is likely to reduce heterogeneity in AD classification.
format Online
Article
Text
id pubmed-9484605
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Lippincott Williams & Wilkins
record_format MEDLINE/PubMed
spelling pubmed-94846052022-09-20 A Pragmatic, Data-Driven Method to Determine Cutoffs for CSF Biomarkers of Alzheimer Disease Based on Validation Against PET Imaging Dumurgier, Julien Sabia, Séverine Zetterberg, Henrik Teunissen, Charlotte E. Hanseeuw, Bernard Orellana, Adelina Schraen, Susanna Gabelle, Audrey Boada, Mercè Lebouvier, Thibaud Willemse, Eline A.J. Cognat, Emmanuel Ruiz, Agustin Hourregue, Claire Lilamand, Matthieu Bouaziz-Amar, Elodie Laplanche, Jean-Louis Lehmann, Sylvain Pasquier, Florence Scheltens, Philip Blennow, Kaj Singh-Manoux, Archana Paquet, Claire Neurology Research Articles BACKGROUND AND OBJECTIVES: To elaborate a new algorithm to establish a standardized method to define cutoffs for CSF biomarkers of Alzheimer disease (AD) by validating the algorithm against CSF classification derived from PET imaging. METHODS: Low and high levels of CSF phosphorylated tau were first identified to establish optimal cutoffs for CSF β-amyloid (Aβ) peptide biomarkers. These Aβ cutoffs were then used to determine cutoffs for CSF tau and phosphorylated tau markers. We compared this algorithm to a reference method, based on tau and amyloid PET imaging status (ADNI study), and then applied the algorithm to 10 large clinical cohorts of patients. RESULTS: A total of 6,922 patients with CSF biomarker data were included (mean [SD] age: 70.6 [8.5] years, 51.0% women). In the ADNI study population (n = 497), the agreement between classification based on our algorithm and the one based on amyloid/tau PET imaging was high, with Cohen's kappa coefficient between 0.87 and 0.99. Applying the algorithm to 10 large cohorts of patients (n = 6,425), the proportion of persons with AD ranged from 25.9% to 43.5%. DISCUSSION: The proposed novel, pragmatic method to determine CSF biomarker cutoffs for AD does not require assessment of other biomarkers or assumptions concerning the clinical diagnosis of patients. Use of this standardized algorithm is likely to reduce heterogeneity in AD classification. Lippincott Williams & Wilkins 2022-08-16 /pmc/articles/PMC9484605/ /pubmed/35970577 http://dx.doi.org/10.1212/WNL.0000000000200735 Text en Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
spellingShingle Research Articles
Dumurgier, Julien
Sabia, Séverine
Zetterberg, Henrik
Teunissen, Charlotte E.
Hanseeuw, Bernard
Orellana, Adelina
Schraen, Susanna
Gabelle, Audrey
Boada, Mercè
Lebouvier, Thibaud
Willemse, Eline A.J.
Cognat, Emmanuel
Ruiz, Agustin
Hourregue, Claire
Lilamand, Matthieu
Bouaziz-Amar, Elodie
Laplanche, Jean-Louis
Lehmann, Sylvain
Pasquier, Florence
Scheltens, Philip
Blennow, Kaj
Singh-Manoux, Archana
Paquet, Claire
A Pragmatic, Data-Driven Method to Determine Cutoffs for CSF Biomarkers of Alzheimer Disease Based on Validation Against PET Imaging
title A Pragmatic, Data-Driven Method to Determine Cutoffs for CSF Biomarkers of Alzheimer Disease Based on Validation Against PET Imaging
title_full A Pragmatic, Data-Driven Method to Determine Cutoffs for CSF Biomarkers of Alzheimer Disease Based on Validation Against PET Imaging
title_fullStr A Pragmatic, Data-Driven Method to Determine Cutoffs for CSF Biomarkers of Alzheimer Disease Based on Validation Against PET Imaging
title_full_unstemmed A Pragmatic, Data-Driven Method to Determine Cutoffs for CSF Biomarkers of Alzheimer Disease Based on Validation Against PET Imaging
title_short A Pragmatic, Data-Driven Method to Determine Cutoffs for CSF Biomarkers of Alzheimer Disease Based on Validation Against PET Imaging
title_sort pragmatic, data-driven method to determine cutoffs for csf biomarkers of alzheimer disease based on validation against pet imaging
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484605/
https://www.ncbi.nlm.nih.gov/pubmed/35970577
http://dx.doi.org/10.1212/WNL.0000000000200735
work_keys_str_mv AT dumurgierjulien apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT sabiaseverine apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT zetterberghenrik apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT teunissencharlottee apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT hanseeuwbernard apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT orellanaadelina apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT schraensusanna apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT gabelleaudrey apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT boadamerce apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT lebouvierthibaud apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT willemseelineaj apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT cognatemmanuel apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT ruizagustin apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT hourregueclaire apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT lilamandmatthieu apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT bouazizamarelodie apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT laplanchejeanlouis apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT lehmannsylvain apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT pasquierflorence apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT scheltensphilip apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT blennowkaj apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT singhmanouxarchana apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT paquetclaire apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT apragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT dumurgierjulien pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT sabiaseverine pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT zetterberghenrik pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT teunissencharlottee pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT hanseeuwbernard pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT orellanaadelina pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT schraensusanna pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT gabelleaudrey pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT boadamerce pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT lebouvierthibaud pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT willemseelineaj pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT cognatemmanuel pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT ruizagustin pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT hourregueclaire pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT lilamandmatthieu pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT bouazizamarelodie pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT laplanchejeanlouis pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT lehmannsylvain pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT pasquierflorence pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT scheltensphilip pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT blennowkaj pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT singhmanouxarchana pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT paquetclaire pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging
AT pragmaticdatadrivenmethodtodeterminecutoffsforcsfbiomarkersofalzheimerdiseasebasedonvalidationagainstpetimaging