Cargando…

Direct capture and sequencing reveal ultra-short single-stranded DNA in biofluids

Cell-free DNA (cfDNA) has become the predominant analyte of liquid biopsy; however, recent studies suggest the presence of subnucleosomal-sized DNA fragments in circulation that are likely single-stranded. Here, we report a method called direct capture and sequencing (DCS) tailored to recover such f...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Lauren Y., Dai, Peng, Wu, Lucia R., Patel, Abhijit A., Zhang, David Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486625/
https://www.ncbi.nlm.nih.gov/pubmed/36147958
http://dx.doi.org/10.1016/j.isci.2022.105046
Descripción
Sumario:Cell-free DNA (cfDNA) has become the predominant analyte of liquid biopsy; however, recent studies suggest the presence of subnucleosomal-sized DNA fragments in circulation that are likely single-stranded. Here, we report a method called direct capture and sequencing (DCS) tailored to recover such fragments from biofluids by directly capturing them using short degenerate probes followed by single strand-based library preparation and next-generation sequencing. DCS revealed a new DNA population in biofluids, named ultrashort single-stranded DNA (ussDNA). Evaluation of the size distribution and abundance of ussDNA manifested generality of its presence in humans, animal species, and plants. In humans, red blood cells were found to contain abundant ussDNA; plasma-derived ussDNA exhibited modal size at 50 nt. This work reports the presence of an understudied DNA population in circulation, and yet more work is awaiting to study its generation mechanism, tissue of origin, disease implications, etc.