Cargando…
A Novel Leucyl-tRNA Synthetase Inhibitor, MRX-6038, Expresses Anti-Mycobacterium abscessus Activity In Vitro and In Vivo
Therapeutic options for Mycobacterium abscessus infections are extremely limited, and new drugs are needed. The anti-M. abscessus activity of MRX-6038, a new leucyl-tRNA synthetase inhibitor, was evaluated in vitro and in vivo. Antimicrobial susceptibility testing was performed on 12 nontuberculosis...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487484/ https://www.ncbi.nlm.nih.gov/pubmed/35969055 http://dx.doi.org/10.1128/aac.00601-22 |
Sumario: | Therapeutic options for Mycobacterium abscessus infections are extremely limited, and new drugs are needed. The anti-M. abscessus activity of MRX-6038, a new leucyl-tRNA synthetase inhibitor, was evaluated in vitro and in vivo. Antimicrobial susceptibility testing was performed on 12 nontuberculosis mycobacteria (NTM) reference strains and 227 clinical NTM isolates. A minimum bactericidal concentration assay was conducted to distinguish the bactericidal versus bacteriostatic activity of MRX-6038. The synergy between MRX-6038 and 12 clinically important antibiotics was determined using a checkerboard assay. The activity of MRX-6038 against M. abscessus residing inside macrophages was also evaluated. Finally, the potency of MRX-6038 in vivo was determined in a neutropenic mouse model that mimicked a pulmonary M. abscessus infection. MRX-6038 exhibited high anti-M. abscessus activity against extracellular M. abscessus in culture, with a MIC(50) of 0.063 mg/L and a MIC(90) of 0.125 mg/L. Fifty percent of the activity was bactericidal, and fifty percent was bacteriostatic. A synergy between MRX-6038 and clarithromycin or azithromycin was found in 25% of strains. No antagonism was evident between MRX-6038 and 12 antibiotics commonly used to treat NTM infections. MRX-6038 also exhibited activity against intracellular NTM, which caused a significant reduction in the bacterial load in the lungs of M. abscessus-infected neutropenic mice. In conclusion, MRX-6038 was active against M. abscessus in vitro and in vivo, and it represents a potential candidate for incorporation into strategies by which M. abscessus infections are treated. |
---|