Cargando…
Polyphyllin II induced apoptosis of NSCLC cells by inhibiting autophagy through the mTOR pathway
CONTEXT: Polyphyllin II (PPII) is a steroidal saponin isolated from Rhizoma Paridis. It exhibits significant antitumor activity such as anti-proliferation and pro-apoptosis in lung cancer. OBJECTIVE: To explore whether PPII induce autophagy and the relationship between autophagy and apoptosis in non...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487979/ https://www.ncbi.nlm.nih.gov/pubmed/36102594 http://dx.doi.org/10.1080/13880209.2022.2120021 |
Sumario: | CONTEXT: Polyphyllin II (PPII) is a steroidal saponin isolated from Rhizoma Paridis. It exhibits significant antitumor activity such as anti-proliferation and pro-apoptosis in lung cancer. OBJECTIVE: To explore whether PPII induce autophagy and the relationship between autophagy and apoptosis in non-small cell lung cancer (NSCLC) cells. MATERIALS AND METHODS: The effects of PPII (0, 1, 5, and 10 μM) were elucidated by CCK8 assay, colony formation test, TUNEL staining, MDC method, and mRFP-GFP-LC3 lentivirus transfection in A549 and H1299 cells for 24 h. DMSO-treated cells were selected as control. The protein expression of autophagy (LC3-II, p62), apoptosis (Bcl-2, Bax, caspase-3) and p-mTOR was detected by Western blotting. We explored the relationship between autophagy and apoptosis by autophagy inhibitor CQ (10 μM) and 3-MA (5 mM). RESULTS: PPII (0, 1, 5, and 10 μM) inhibited the proliferation and induced apoptosis. The IC(50) values of A549 and H1299 cells were 8.26 ± 0.03 and 2.86 ± 0.83 μM. We found that PPII could induce autophagy. PPII promoted the formation of autophagosome, increased the expression of LC3-II/LC3-I (p < 0.05), while decreased p62 and p-mTOR (p < 0.05). Additionally, the co-treatment with autophagy inhibitors promoted the protein expression of c-caspase-3 and rate of Bax/Bcl-2 (p < 0.05), compared with PPII-only treatment group. Therefore, our results indicated that PPII-induced autophagy may be a mechanism to promote cell survival, although it can also induce apoptosis. CONCLUSIONS: PPII-induced apoptosis exerts its anticancer activity by inhibiting autophagy, which will hopefully provide a prospective compound for NSCLC treatment. |
---|