Cargando…
Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity
Recent studies have shown that various agrochemicals can substantially affect microbial communities; especially those that are associated with cultivated plants. Under certain circumstances, up to 50% of the naturally occurring microorganisms can be negatively affected by common agricultural practic...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487991/ https://www.ncbi.nlm.nih.gov/pubmed/36157708 http://dx.doi.org/10.1016/j.ese.2020.100061 |
_version_ | 1784792560723558400 |
---|---|
author | Wang, Mengcen Cernava, Tomislav |
author_facet | Wang, Mengcen Cernava, Tomislav |
author_sort | Wang, Mengcen |
collection | PubMed |
description | Recent studies have shown that various agrochemicals can substantially affect microbial communities; especially those that are associated with cultivated plants. Under certain circumstances, up to 50% of the naturally occurring microorganisms can be negatively affected by common agricultural practices such as seed coating with fungicide-based matrices. Nevertheless, the off-target effects of commonly applied agrochemicals are still understudied in terms of their interferences with microbial communities. At the same time, agrochemical inputs are steadily increasing due to the intensification of agriculture and the increasing pathogen pressure that is currently observed worldwide. In this article, we briefly reflect on the current knowledge related to pesticide interference with microbial communities and discuss negative implications for the plant holobiont as well as such that are spanning beyond local system borders. Cumulative effects of pesticide inputs that cause alterations in microbial functioning likely have unforeseen implications on geochemical cycles that should be addressed with a high priority in ongoing research. A holistic assessment of such implications will allow us to objectively select the most suitable means for food production under the scenario of a growing global population and aggravating climatic conditions. We present three hypothetical solutions that might facilitate a more sustainable and less damaging application of pesticides in the future. |
format | Online Article Text |
id | pubmed-9487991 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-94879912022-09-23 Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity Wang, Mengcen Cernava, Tomislav Environ Sci Ecotechnol Perspective Recent studies have shown that various agrochemicals can substantially affect microbial communities; especially those that are associated with cultivated plants. Under certain circumstances, up to 50% of the naturally occurring microorganisms can be negatively affected by common agricultural practices such as seed coating with fungicide-based matrices. Nevertheless, the off-target effects of commonly applied agrochemicals are still understudied in terms of their interferences with microbial communities. At the same time, agrochemical inputs are steadily increasing due to the intensification of agriculture and the increasing pathogen pressure that is currently observed worldwide. In this article, we briefly reflect on the current knowledge related to pesticide interference with microbial communities and discuss negative implications for the plant holobiont as well as such that are spanning beyond local system borders. Cumulative effects of pesticide inputs that cause alterations in microbial functioning likely have unforeseen implications on geochemical cycles that should be addressed with a high priority in ongoing research. A holistic assessment of such implications will allow us to objectively select the most suitable means for food production under the scenario of a growing global population and aggravating climatic conditions. We present three hypothetical solutions that might facilitate a more sustainable and less damaging application of pesticides in the future. Elsevier 2020-09-15 /pmc/articles/PMC9487991/ /pubmed/36157708 http://dx.doi.org/10.1016/j.ese.2020.100061 Text en © 2020 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Perspective Wang, Mengcen Cernava, Tomislav Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity |
title | Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity |
title_full | Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity |
title_fullStr | Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity |
title_full_unstemmed | Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity |
title_short | Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity |
title_sort | overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity |
topic | Perspective |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487991/ https://www.ncbi.nlm.nih.gov/pubmed/36157708 http://dx.doi.org/10.1016/j.ese.2020.100061 |
work_keys_str_mv | AT wangmengcen overhaulingtheassessmentofagrochemicaldriveninterferenceswithmicrobialcommunitiesforimprovedglobalecosystemintegrity AT cernavatomislav overhaulingtheassessmentofagrochemicaldriveninterferenceswithmicrobialcommunitiesforimprovedglobalecosystemintegrity |