Cargando…
A taste for beauty: On the expected taste, hardness, texture, and temperature of geometric shapes
Rounded shapes, which have been shown to enhance sweetness, were compared to the perfectly symmetrical Platonic solids. In a first online experiment, participants were presented with a rotating three-dimensional geometric shape (a sphere, the five Platonic solids, and three irregular angular/rounded...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490474/ https://www.ncbi.nlm.nih.gov/pubmed/36157518 http://dx.doi.org/10.1177/20416695221120948 |
_version_ | 1784793093045747712 |
---|---|
author | Juravle, Georgiana Olari, Emilia-Liliana Spence, Charles |
author_facet | Juravle, Georgiana Olari, Emilia-Liliana Spence, Charles |
author_sort | Juravle, Georgiana |
collection | PubMed |
description | Rounded shapes, which have been shown to enhance sweetness, were compared to the perfectly symmetrical Platonic solids. In a first online experiment, participants were presented with a rotating three-dimensional geometric shape (a sphere, the five Platonic solids, and three irregular angular/rounded/naturalistic controls), and indicated their liking for the shape, as well as its perceived hardness, and its expected temperature. The sphere was liked best, followed by the Platonic solids. The sphere was also evaluated as softest, and received the warmest temperature ratings. By contrast, the Platonic solids were rated as harder and significantly colder than the sphere. Experiment 2 investigated whether the liked shapes were also evaluated as looking tastier. Ratings of expected tastiness and the appearance of five shapes selected based on high liking scores and fitted with edible and inedible visual textures were recorded. The sphere was rated as looking tastiest, with edible-textured rounded shapes resulting in significantly tastier ratings. Experiment 3 assessed the taste corresponding to each shape. A sweet and umami preference for rounded shapes was documented, with sour and bitter typically matched to angular shapes. Importantly, the Platonic solids were associated with several tastes. These findings are explained in terms of current theories of crossmodal correspondences, while considering how temperature and texture can be used to modulate expected liking. |
format | Online Article Text |
id | pubmed-9490474 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-94904742022-09-22 A taste for beauty: On the expected taste, hardness, texture, and temperature of geometric shapes Juravle, Georgiana Olari, Emilia-Liliana Spence, Charles Iperception Standard Article Rounded shapes, which have been shown to enhance sweetness, were compared to the perfectly symmetrical Platonic solids. In a first online experiment, participants were presented with a rotating three-dimensional geometric shape (a sphere, the five Platonic solids, and three irregular angular/rounded/naturalistic controls), and indicated their liking for the shape, as well as its perceived hardness, and its expected temperature. The sphere was liked best, followed by the Platonic solids. The sphere was also evaluated as softest, and received the warmest temperature ratings. By contrast, the Platonic solids were rated as harder and significantly colder than the sphere. Experiment 2 investigated whether the liked shapes were also evaluated as looking tastier. Ratings of expected tastiness and the appearance of five shapes selected based on high liking scores and fitted with edible and inedible visual textures were recorded. The sphere was rated as looking tastiest, with edible-textured rounded shapes resulting in significantly tastier ratings. Experiment 3 assessed the taste corresponding to each shape. A sweet and umami preference for rounded shapes was documented, with sour and bitter typically matched to angular shapes. Importantly, the Platonic solids were associated with several tastes. These findings are explained in terms of current theories of crossmodal correspondences, while considering how temperature and texture can be used to modulate expected liking. SAGE Publications 2022-09-19 /pmc/articles/PMC9490474/ /pubmed/36157518 http://dx.doi.org/10.1177/20416695221120948 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Standard Article Juravle, Georgiana Olari, Emilia-Liliana Spence, Charles A taste for beauty: On the expected taste, hardness, texture, and temperature of geometric shapes |
title | A taste for beauty: On the expected taste, hardness, texture, and temperature
of geometric shapes |
title_full | A taste for beauty: On the expected taste, hardness, texture, and temperature
of geometric shapes |
title_fullStr | A taste for beauty: On the expected taste, hardness, texture, and temperature
of geometric shapes |
title_full_unstemmed | A taste for beauty: On the expected taste, hardness, texture, and temperature
of geometric shapes |
title_short | A taste for beauty: On the expected taste, hardness, texture, and temperature
of geometric shapes |
title_sort | taste for beauty: on the expected taste, hardness, texture, and temperature
of geometric shapes |
topic | Standard Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490474/ https://www.ncbi.nlm.nih.gov/pubmed/36157518 http://dx.doi.org/10.1177/20416695221120948 |
work_keys_str_mv | AT juravlegeorgiana atasteforbeautyontheexpectedtastehardnesstextureandtemperatureofgeometricshapes AT olariemilialiliana atasteforbeautyontheexpectedtastehardnesstextureandtemperatureofgeometricshapes AT spencecharles atasteforbeautyontheexpectedtastehardnesstextureandtemperatureofgeometricshapes AT juravlegeorgiana tasteforbeautyontheexpectedtastehardnesstextureandtemperatureofgeometricshapes AT olariemilialiliana tasteforbeautyontheexpectedtastehardnesstextureandtemperatureofgeometricshapes AT spencecharles tasteforbeautyontheexpectedtastehardnesstextureandtemperatureofgeometricshapes |