Cargando…

Intrinsic bias estimation for improved analysis of bulk and single-cell chromatin accessibility profiles using SELMA

Genome-wide profiling of chromatin accessibility by DNase-seq or ATAC-seq has been widely used to identify regulatory DNA elements and transcription factor binding sites. However, enzymatic DNA cleavage exhibits intrinsic sequence biases that confound chromatin accessibility profiling data analysis....

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Shengen Shawn, Liu, Lin, Li, Qi, Ma, Wenjing, Guertin, Michael J., Meyer, Clifford A., Deng, Ke, Zhang, Tingting, Zang, Chongzhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9492688/
https://www.ncbi.nlm.nih.gov/pubmed/36130957
http://dx.doi.org/10.1038/s41467-022-33194-z
_version_ 1784793532274311168
author Hu, Shengen Shawn
Liu, Lin
Li, Qi
Ma, Wenjing
Guertin, Michael J.
Meyer, Clifford A.
Deng, Ke
Zhang, Tingting
Zang, Chongzhi
author_facet Hu, Shengen Shawn
Liu, Lin
Li, Qi
Ma, Wenjing
Guertin, Michael J.
Meyer, Clifford A.
Deng, Ke
Zhang, Tingting
Zang, Chongzhi
author_sort Hu, Shengen Shawn
collection PubMed
description Genome-wide profiling of chromatin accessibility by DNase-seq or ATAC-seq has been widely used to identify regulatory DNA elements and transcription factor binding sites. However, enzymatic DNA cleavage exhibits intrinsic sequence biases that confound chromatin accessibility profiling data analysis. Existing computational tools are limited in their ability to account for such intrinsic biases and not designed for analyzing single-cell data. Here, we present Simplex Encoded Linear Model for Accessible Chromatin (SELMA), a computational method for systematic estimation of intrinsic cleavage biases from genomic chromatin accessibility profiling data. We demonstrate that SELMA yields accurate and robust bias estimation from both bulk and single-cell DNase-seq and ATAC-seq data. SELMA can utilize internal mitochondrial DNA data to improve bias estimation. We show that transcription factor binding inference from DNase footprints can be improved by incorporating estimated biases using SELMA. Furthermore, we show strong effects of intrinsic biases in single-cell ATAC-seq data, and develop the first single-cell ATAC-seq intrinsic bias correction model to improve cell clustering. SELMA can enhance the performance of existing bioinformatics tools and improve the analysis of both bulk and single-cell chromatin accessibility sequencing data.
format Online
Article
Text
id pubmed-9492688
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-94926882022-09-23 Intrinsic bias estimation for improved analysis of bulk and single-cell chromatin accessibility profiles using SELMA Hu, Shengen Shawn Liu, Lin Li, Qi Ma, Wenjing Guertin, Michael J. Meyer, Clifford A. Deng, Ke Zhang, Tingting Zang, Chongzhi Nat Commun Article Genome-wide profiling of chromatin accessibility by DNase-seq or ATAC-seq has been widely used to identify regulatory DNA elements and transcription factor binding sites. However, enzymatic DNA cleavage exhibits intrinsic sequence biases that confound chromatin accessibility profiling data analysis. Existing computational tools are limited in their ability to account for such intrinsic biases and not designed for analyzing single-cell data. Here, we present Simplex Encoded Linear Model for Accessible Chromatin (SELMA), a computational method for systematic estimation of intrinsic cleavage biases from genomic chromatin accessibility profiling data. We demonstrate that SELMA yields accurate and robust bias estimation from both bulk and single-cell DNase-seq and ATAC-seq data. SELMA can utilize internal mitochondrial DNA data to improve bias estimation. We show that transcription factor binding inference from DNase footprints can be improved by incorporating estimated biases using SELMA. Furthermore, we show strong effects of intrinsic biases in single-cell ATAC-seq data, and develop the first single-cell ATAC-seq intrinsic bias correction model to improve cell clustering. SELMA can enhance the performance of existing bioinformatics tools and improve the analysis of both bulk and single-cell chromatin accessibility sequencing data. Nature Publishing Group UK 2022-09-21 /pmc/articles/PMC9492688/ /pubmed/36130957 http://dx.doi.org/10.1038/s41467-022-33194-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Hu, Shengen Shawn
Liu, Lin
Li, Qi
Ma, Wenjing
Guertin, Michael J.
Meyer, Clifford A.
Deng, Ke
Zhang, Tingting
Zang, Chongzhi
Intrinsic bias estimation for improved analysis of bulk and single-cell chromatin accessibility profiles using SELMA
title Intrinsic bias estimation for improved analysis of bulk and single-cell chromatin accessibility profiles using SELMA
title_full Intrinsic bias estimation for improved analysis of bulk and single-cell chromatin accessibility profiles using SELMA
title_fullStr Intrinsic bias estimation for improved analysis of bulk and single-cell chromatin accessibility profiles using SELMA
title_full_unstemmed Intrinsic bias estimation for improved analysis of bulk and single-cell chromatin accessibility profiles using SELMA
title_short Intrinsic bias estimation for improved analysis of bulk and single-cell chromatin accessibility profiles using SELMA
title_sort intrinsic bias estimation for improved analysis of bulk and single-cell chromatin accessibility profiles using selma
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9492688/
https://www.ncbi.nlm.nih.gov/pubmed/36130957
http://dx.doi.org/10.1038/s41467-022-33194-z
work_keys_str_mv AT hushengenshawn intrinsicbiasestimationforimprovedanalysisofbulkandsinglecellchromatinaccessibilityprofilesusingselma
AT liulin intrinsicbiasestimationforimprovedanalysisofbulkandsinglecellchromatinaccessibilityprofilesusingselma
AT liqi intrinsicbiasestimationforimprovedanalysisofbulkandsinglecellchromatinaccessibilityprofilesusingselma
AT mawenjing intrinsicbiasestimationforimprovedanalysisofbulkandsinglecellchromatinaccessibilityprofilesusingselma
AT guertinmichaelj intrinsicbiasestimationforimprovedanalysisofbulkandsinglecellchromatinaccessibilityprofilesusingselma
AT meyerclifforda intrinsicbiasestimationforimprovedanalysisofbulkandsinglecellchromatinaccessibilityprofilesusingselma
AT dengke intrinsicbiasestimationforimprovedanalysisofbulkandsinglecellchromatinaccessibilityprofilesusingselma
AT zhangtingting intrinsicbiasestimationforimprovedanalysisofbulkandsinglecellchromatinaccessibilityprofilesusingselma
AT zangchongzhi intrinsicbiasestimationforimprovedanalysisofbulkandsinglecellchromatinaccessibilityprofilesusingselma