Cargando…
Sequential Accumulation of ‘Driver’ Pathway Mutations Induces the Upregulation of Hydrogen-Sulfide-Producing Enzymes in Human Colonic Epithelial Cell Organoids
Recently, a CRISPR-Cas9 genome-editing system was developed with introduced sequential ‘driver’ mutations in the WNT, MAPK, TGF-β, TP53 and PI3K pathways into organoids derived from normal human intestinal epithelial cells. Prior studies have demonstrated that isogenic organoids harboring mutations...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495861/ https://www.ncbi.nlm.nih.gov/pubmed/36139896 http://dx.doi.org/10.3390/antiox11091823 |
_version_ | 1784794126908129280 |
---|---|
author | Ascenção, Kelly Dilek, Nahzli Zuhra, Karim Módis, Katalin Sato, Toshiro Szabo, Csaba |
author_facet | Ascenção, Kelly Dilek, Nahzli Zuhra, Karim Módis, Katalin Sato, Toshiro Szabo, Csaba |
author_sort | Ascenção, Kelly |
collection | PubMed |
description | Recently, a CRISPR-Cas9 genome-editing system was developed with introduced sequential ‘driver’ mutations in the WNT, MAPK, TGF-β, TP53 and PI3K pathways into organoids derived from normal human intestinal epithelial cells. Prior studies have demonstrated that isogenic organoids harboring mutations in the tumor suppressor genes APC, SMAD4 and TP53, as well as the oncogene KRAS, assumed more proliferative and invasive properties in vitro and in vivo. A separate body of studies implicates the role of various hydrogen sulfide (H(2)S)-producing enzymes in the pathogenesis of colon cancer. The current study was designed to determine if the sequential mutations in the above pathway affect the expression of various H(2)S producing enzymes. Western blotting was used to detect the expression of the H(2)S-producing enzymes cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST), as well as several key enzymes involved in H(2)S degradation such as thiosulfate sulfurtransferase/rhodanese (TST), ethylmalonic encephalopathy 1 protein/persulfide dioxygenase (ETHE1) and sulfide-quinone oxidoreductase (SQR). H(2)S levels were detected by live-cell imaging using a fluorescent H(2)S probe. Bioenergetic parameters were assessed by Extracellular Flux Analysis; markers of epithelial-mesenchymal transition (EMT) were assessed by Western blotting. The results show that the consecutive mutations produced gradual upregulations in CBS expression—in particular in its truncated (45 kDa) form—as well as in CSE and 3-MST expression. In more advanced organoids, when the upregulation of H(2)S-producing enzymes coincided with the downregulation of the H(2)S-degrading enzyme SQR, increased H(2)S generation was also detected. This effect coincided with the upregulation of cellular bioenergetics (mitochondrial respiration and/or glycolysis) and an upregulation of the Wnt/β-catenin pathway, a key effector of EMT. Thus sequential mutations in colon epithelial cells according to the Vogelstein sequence are associated with a gradual upregulation of multiple H(2)S generating pathways, which, in turn, translates into functional changes in cellular bioenergetics and dedifferentiation, producing more aggressive and more invasive colon cancer phenotypes. |
format | Online Article Text |
id | pubmed-9495861 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94958612022-09-23 Sequential Accumulation of ‘Driver’ Pathway Mutations Induces the Upregulation of Hydrogen-Sulfide-Producing Enzymes in Human Colonic Epithelial Cell Organoids Ascenção, Kelly Dilek, Nahzli Zuhra, Karim Módis, Katalin Sato, Toshiro Szabo, Csaba Antioxidants (Basel) Article Recently, a CRISPR-Cas9 genome-editing system was developed with introduced sequential ‘driver’ mutations in the WNT, MAPK, TGF-β, TP53 and PI3K pathways into organoids derived from normal human intestinal epithelial cells. Prior studies have demonstrated that isogenic organoids harboring mutations in the tumor suppressor genes APC, SMAD4 and TP53, as well as the oncogene KRAS, assumed more proliferative and invasive properties in vitro and in vivo. A separate body of studies implicates the role of various hydrogen sulfide (H(2)S)-producing enzymes in the pathogenesis of colon cancer. The current study was designed to determine if the sequential mutations in the above pathway affect the expression of various H(2)S producing enzymes. Western blotting was used to detect the expression of the H(2)S-producing enzymes cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST), as well as several key enzymes involved in H(2)S degradation such as thiosulfate sulfurtransferase/rhodanese (TST), ethylmalonic encephalopathy 1 protein/persulfide dioxygenase (ETHE1) and sulfide-quinone oxidoreductase (SQR). H(2)S levels were detected by live-cell imaging using a fluorescent H(2)S probe. Bioenergetic parameters were assessed by Extracellular Flux Analysis; markers of epithelial-mesenchymal transition (EMT) were assessed by Western blotting. The results show that the consecutive mutations produced gradual upregulations in CBS expression—in particular in its truncated (45 kDa) form—as well as in CSE and 3-MST expression. In more advanced organoids, when the upregulation of H(2)S-producing enzymes coincided with the downregulation of the H(2)S-degrading enzyme SQR, increased H(2)S generation was also detected. This effect coincided with the upregulation of cellular bioenergetics (mitochondrial respiration and/or glycolysis) and an upregulation of the Wnt/β-catenin pathway, a key effector of EMT. Thus sequential mutations in colon epithelial cells according to the Vogelstein sequence are associated with a gradual upregulation of multiple H(2)S generating pathways, which, in turn, translates into functional changes in cellular bioenergetics and dedifferentiation, producing more aggressive and more invasive colon cancer phenotypes. MDPI 2022-09-15 /pmc/articles/PMC9495861/ /pubmed/36139896 http://dx.doi.org/10.3390/antiox11091823 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ascenção, Kelly Dilek, Nahzli Zuhra, Karim Módis, Katalin Sato, Toshiro Szabo, Csaba Sequential Accumulation of ‘Driver’ Pathway Mutations Induces the Upregulation of Hydrogen-Sulfide-Producing Enzymes in Human Colonic Epithelial Cell Organoids |
title | Sequential Accumulation of ‘Driver’ Pathway Mutations Induces the Upregulation of Hydrogen-Sulfide-Producing Enzymes in Human Colonic Epithelial Cell Organoids |
title_full | Sequential Accumulation of ‘Driver’ Pathway Mutations Induces the Upregulation of Hydrogen-Sulfide-Producing Enzymes in Human Colonic Epithelial Cell Organoids |
title_fullStr | Sequential Accumulation of ‘Driver’ Pathway Mutations Induces the Upregulation of Hydrogen-Sulfide-Producing Enzymes in Human Colonic Epithelial Cell Organoids |
title_full_unstemmed | Sequential Accumulation of ‘Driver’ Pathway Mutations Induces the Upregulation of Hydrogen-Sulfide-Producing Enzymes in Human Colonic Epithelial Cell Organoids |
title_short | Sequential Accumulation of ‘Driver’ Pathway Mutations Induces the Upregulation of Hydrogen-Sulfide-Producing Enzymes in Human Colonic Epithelial Cell Organoids |
title_sort | sequential accumulation of ‘driver’ pathway mutations induces the upregulation of hydrogen-sulfide-producing enzymes in human colonic epithelial cell organoids |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495861/ https://www.ncbi.nlm.nih.gov/pubmed/36139896 http://dx.doi.org/10.3390/antiox11091823 |
work_keys_str_mv | AT ascencaokelly sequentialaccumulationofdriverpathwaymutationsinducestheupregulationofhydrogensulfideproducingenzymesinhumancolonicepithelialcellorganoids AT dileknahzli sequentialaccumulationofdriverpathwaymutationsinducestheupregulationofhydrogensulfideproducingenzymesinhumancolonicepithelialcellorganoids AT zuhrakarim sequentialaccumulationofdriverpathwaymutationsinducestheupregulationofhydrogensulfideproducingenzymesinhumancolonicepithelialcellorganoids AT modiskatalin sequentialaccumulationofdriverpathwaymutationsinducestheupregulationofhydrogensulfideproducingenzymesinhumancolonicepithelialcellorganoids AT satotoshiro sequentialaccumulationofdriverpathwaymutationsinducestheupregulationofhydrogensulfideproducingenzymesinhumancolonicepithelialcellorganoids AT szabocsaba sequentialaccumulationofdriverpathwaymutationsinducestheupregulationofhydrogensulfideproducingenzymesinhumancolonicepithelialcellorganoids |