Cargando…
Succinylation Modified Ovalbumin: Structural, Interfacial, and Functional Properties
In this study, ovalbumin (OVA) was succinylated with the addition of different levels of succinic anhydride, and the structural and functional properties of succinylated OVA (SOVA) were investigated. SDS−PAGE and FTIR spectrum confirmed the covalent attachment of the succinyl group to OVA. Thermal s...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497935/ https://www.ncbi.nlm.nih.gov/pubmed/36140852 http://dx.doi.org/10.3390/foods11182724 |
Sumario: | In this study, ovalbumin (OVA) was succinylated with the addition of different levels of succinic anhydride, and the structural and functional properties of succinylated OVA (SOVA) were investigated. SDS−PAGE and FTIR spectrum confirmed the covalent attachment of the succinyl group to OVA. Thermal stability and the absolute value of zeta potential (pH 6.0) of SOVA were enhanced by 14.90% and 76.77% higher than that of the native OVA (NOVA), respectively. Circular dichroism (CD) spectra demonstrated that the succinylation decreased the α−helix and increased β−sheet content to 21.31% and 43.28%, respectively. The content of free sulfhydryl groups increased and intrinsic fluorescence spectra suggested the SOVA became more unfolded and flexible as the degree of succinylation enhanced. Furthermore, succinylation effectively enhanced the solubility and decreased the interface tension (oil−water and air−water interface) of OVA. Compared to NOVA, the emulsifying activity and stability of SOVA were increased by 1.6 times and 1.2 times, respectively, and foaming capacity and stability were enhanced by 2.7 times and 1.5 times, respectively. |
---|