Cargando…
TAMC: A deep-learning approach to predict motif-centric transcriptional factor binding activity based on ATAC-seq profile
Determining transcriptional factor binding sites (TFBSs) is critical for understanding the molecular mechanisms regulating gene expression in different biological conditions. Biological assays designed to directly mapping TFBSs require large sample size and intensive resources. As an alternative, AT...
Autores principales: | Yang, Tianqi, Henao, Ricardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499209/ https://www.ncbi.nlm.nih.gov/pubmed/36094959 http://dx.doi.org/10.1371/journal.pcbi.1009921 |
Ejemplares similares
-
maxATAC: Genome-scale transcription-factor binding prediction from ATAC-seq with deep neural networks
por: Cazares, Tareian A., et al.
Publicado: (2023) -
Transcript-indexed ATAC-seq for precision immune profiling
por: Satpathy, Ansuman T., et al.
Publicado: (2018) -
Identification of transcription factor binding sites using ATAC-seq
por: Li, Zhijian, et al.
Publicado: (2019) -
A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data
por: Li, Gaoyang, et al.
Publicado: (2022) -
ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation
por: Bentsen, Mette, et al.
Publicado: (2020)