Cargando…
Deep Learning-Based Feature Extraction of Acoustic Emission Signals for Monitoring Wear of Grinding Wheels
Tool wear monitoring is a critical issue in advanced manufacturing systems. In the search for sensing devices that can provide information about the grinding process, Acoustic Emission (AE) appears to be a promising technology. The present paper presents a novel deep learning-based proposal for grin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503273/ https://www.ncbi.nlm.nih.gov/pubmed/36146262 http://dx.doi.org/10.3390/s22186911 |