Cargando…
Deep Learning-Based Feature Extraction of Acoustic Emission Signals for Monitoring Wear of Grinding Wheels
Tool wear monitoring is a critical issue in advanced manufacturing systems. In the search for sensing devices that can provide information about the grinding process, Acoustic Emission (AE) appears to be a promising technology. The present paper presents a novel deep learning-based proposal for grin...
Autores principales: | González, D., Alvarez, J., Sánchez, J. A., Godino, L., Pombo, I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503273/ https://www.ncbi.nlm.nih.gov/pubmed/36146262 http://dx.doi.org/10.3390/s22186911 |
Ejemplares similares
-
Diamond Grinding Wheel Condition Monitoring Based on Acoustic Emission Signals
por: Bi, Guo, et al.
Publicado: (2021) -
On The Influence of Rotary Dresser Geometry on Wear Evolution and Grinding Process
por: Godino, Leire, et al.
Publicado: (2019) -
Virtual Sensors for On-line Wheel Wear and Part Roughness Measurement in the Grinding Process
por: Arriandiaga, Ander, et al.
Publicado: (2014) -
Probabilistic Aspects of Modeling and Analysis of Grinding Wheel Wear
por: Kacalak, Wojciech, et al.
Publicado: (2022) -
Grinding Wheel Loading Evaluation by Using Acoustic Emission Signals and Digital Image Processing
por: Liu, Chien-Sheng, et al.
Publicado: (2020)