Cargando…
Comparison of Pedestrian Detectors for LiDAR Sensor Trained on Custom Synthetic, Real and Mixed Datasets
Deep learning algorithms for object detection used in autonomous vehicles require a huge amount of labeled data. Data collecting and labeling is time consuming and, most importantly, in most cases useful only for a single specific sensor application. Therefore, in the course of the research which is...
Autores principales: | Jabłoński, Paweł, Iwaniec, Joanna, Zabierowski, Wojciech |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504167/ https://www.ncbi.nlm.nih.gov/pubmed/36146362 http://dx.doi.org/10.3390/s22187014 |
Ejemplares similares
-
LiDAR Intensity Completion: Fully Exploiting the Message from LiDAR Sensors
por: Dai, Weichen, et al.
Publicado: (2022) -
Behavioral Pedestrian Tracking Using a Camera and LiDAR Sensors on a Moving Vehicle
por: Dimitrievski, Martin, et al.
Publicado: (2019) -
A Pedestrian Detection Algorithm Based on Score Fusion for Multi-LiDAR Systems
por: Wu, Tao, et al.
Publicado: (2021) -
Customized Mobile LiDAR System for Manhole Cover Detection and Identification
por: Wei, Zhanying, et al.
Publicado: (2019) -
LiDAR remote sensing and applications
por: Dong, Pinliang, et al.
Publicado: (2017)