Cargando…

A PI Control Method with HGSO Parameter Regulator for Trajectory Planning of 9-DOF Redundant Manipulator

In order to solve the tracking accuracy problem of the redundant manipulator, a PI control method with Henry gas solubility optimization parameter regulator (PI-HGSO) is proposed in this paper. This method consists of the controller and the parameter regulator. The characteristic is that the positio...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Meijiao, Liu, Tianyu, Zhu, Mingchao, Chen, Liheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504498/
https://www.ncbi.nlm.nih.gov/pubmed/36146208
http://dx.doi.org/10.3390/s22186860
Descripción
Sumario:In order to solve the tracking accuracy problem of the redundant manipulator, a PI control method with Henry gas solubility optimization parameter regulator (PI-HGSO) is proposed in this paper. This method consists of the controller and the parameter regulator. The characteristic is that the position deviation of a manipulator is equivalent to a specific function; namely, the proportional-integral (PI) controller is used to adjust the deviation input. The error can be better corrected by the processing of the PI controller so that the inverse kinematics solution of the minimum error can be realized. At the same time, the parameter selection of PI controllers has always been a difficulty in controller design. To address the problem, Henry gas solubility optimization (HGSO) is selected as a parameter regulator to optimize the parameters and obtain the optimal controller, thereby achieving high-precision trajectory tracking. Experiments on 9-DOF redundant manipulator show that our method achieves competitive tracking accuracy in contrast with others. Meanwhile, the efficiency and accuracy of the PI controller are greatly guaranteed by using HGSO to automatically optimize controller parameters instead of making approximate adjustments through infinite manual trial and error. Therefore, the feasibility and competitive superiority of PI-HGSO is fully proved in trajectory planning of redundant manipulators.