Cargando…
Renin-angiotensin-system increases phosphorylated tau and Reactive Oxygen Species in human cortical neuron cell line
Alzheimer's Disease (AD) is the most common cause of dementia. AD patients had increased extracellular amyloid β plaques and intracellular hyperphosphorylated tau (p-tau) in neurons. Recent studies have shown an association between the Renin-Angiotensin System (RAS) and AD. The involvement of R...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9507985/ https://www.ncbi.nlm.nih.gov/pubmed/36164564 http://dx.doi.org/10.1016/j.bbrep.2022.101355 |
_version_ | 1784796920913330176 |
---|---|
author | De Dios, Luz Collazo, Camille Inostroza-Nieves, Yaritza |
author_facet | De Dios, Luz Collazo, Camille Inostroza-Nieves, Yaritza |
author_sort | De Dios, Luz |
collection | PubMed |
description | Alzheimer's Disease (AD) is the most common cause of dementia. AD patients had increased extracellular amyloid β plaques and intracellular hyperphosphorylated tau (p-tau) in neurons. Recent studies have shown an association between the Renin-Angiotensin System (RAS) and AD. The involvement of RAS has been mediated through Angiotensin II (AngII), which is overexpressed in aging brains. However, the exact mechanism of how AngII contributes to AD is unknown. Thus, we hypothesize that AngII increases p-tau by activating its kinases, CDK5 and MAPK. In the human cortical neuron cell line, HCN2, treatment with AngII upregulated the gene expression of CDK5 (2.9 folds, p < 0.0001) and MAPTK (1.9 folds, p < 0.001). The AT1R antagonist, Losartan, blocked the changes in tau kinases. Also, AngII-induced the MAPK activation, increasing its phosphorylation by 400% (p < 0.0001), an increase that was also blocked by Losartan. An increase in p-tau by AngII was observed using fluorescent microscopy. We then quantified Reactive Oxygen Species (ROS) production, and it was significantly increased by AngII (p < 0.01), and treatment with Losartan blunted their production (p < 0.05). The data obtained demonstrated that AngII might contribute to the pathogenesis of AD. |
format | Online Article Text |
id | pubmed-9507985 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-95079852022-09-25 Renin-angiotensin-system increases phosphorylated tau and Reactive Oxygen Species in human cortical neuron cell line De Dios, Luz Collazo, Camille Inostroza-Nieves, Yaritza Biochem Biophys Rep Short Communication Alzheimer's Disease (AD) is the most common cause of dementia. AD patients had increased extracellular amyloid β plaques and intracellular hyperphosphorylated tau (p-tau) in neurons. Recent studies have shown an association between the Renin-Angiotensin System (RAS) and AD. The involvement of RAS has been mediated through Angiotensin II (AngII), which is overexpressed in aging brains. However, the exact mechanism of how AngII contributes to AD is unknown. Thus, we hypothesize that AngII increases p-tau by activating its kinases, CDK5 and MAPK. In the human cortical neuron cell line, HCN2, treatment with AngII upregulated the gene expression of CDK5 (2.9 folds, p < 0.0001) and MAPTK (1.9 folds, p < 0.001). The AT1R antagonist, Losartan, blocked the changes in tau kinases. Also, AngII-induced the MAPK activation, increasing its phosphorylation by 400% (p < 0.0001), an increase that was also blocked by Losartan. An increase in p-tau by AngII was observed using fluorescent microscopy. We then quantified Reactive Oxygen Species (ROS) production, and it was significantly increased by AngII (p < 0.01), and treatment with Losartan blunted their production (p < 0.05). The data obtained demonstrated that AngII might contribute to the pathogenesis of AD. Elsevier 2022-09-22 /pmc/articles/PMC9507985/ /pubmed/36164564 http://dx.doi.org/10.1016/j.bbrep.2022.101355 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Short Communication De Dios, Luz Collazo, Camille Inostroza-Nieves, Yaritza Renin-angiotensin-system increases phosphorylated tau and Reactive Oxygen Species in human cortical neuron cell line |
title | Renin-angiotensin-system increases phosphorylated tau and Reactive Oxygen Species in human cortical neuron cell line |
title_full | Renin-angiotensin-system increases phosphorylated tau and Reactive Oxygen Species in human cortical neuron cell line |
title_fullStr | Renin-angiotensin-system increases phosphorylated tau and Reactive Oxygen Species in human cortical neuron cell line |
title_full_unstemmed | Renin-angiotensin-system increases phosphorylated tau and Reactive Oxygen Species in human cortical neuron cell line |
title_short | Renin-angiotensin-system increases phosphorylated tau and Reactive Oxygen Species in human cortical neuron cell line |
title_sort | renin-angiotensin-system increases phosphorylated tau and reactive oxygen species in human cortical neuron cell line |
topic | Short Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9507985/ https://www.ncbi.nlm.nih.gov/pubmed/36164564 http://dx.doi.org/10.1016/j.bbrep.2022.101355 |
work_keys_str_mv | AT dediosluz reninangiotensinsystemincreasesphosphorylatedtauandreactiveoxygenspeciesinhumancorticalneuroncellline AT collazocamille reninangiotensinsystemincreasesphosphorylatedtauandreactiveoxygenspeciesinhumancorticalneuroncellline AT inostrozanievesyaritza reninangiotensinsystemincreasesphosphorylatedtauandreactiveoxygenspeciesinhumancorticalneuroncellline |