Cargando…
Development of fish gelatin-chitooligosaccharide conjugates through the Maillard reaction for the encapsulation of curcumin
The poor water solubility, bioavailability and stability of bioactive compounds have become the bottleneck restricting their wide application, thus developing a functional carrier to realize the efficient encapsulation and activity improvement of active hydrophobic substances has become a research h...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9507993/ https://www.ncbi.nlm.nih.gov/pubmed/36164327 http://dx.doi.org/10.1016/j.crfs.2022.09.019 |
Sumario: | The poor water solubility, bioavailability and stability of bioactive compounds have become the bottleneck restricting their wide application, thus developing a functional carrier to realize the efficient encapsulation and activity improvement of active hydrophobic substances has become a research hotspot. In this work, a functional glycosylated fish gelatin (called FG-COS conjugates) carrier based on fish gelatin (FG) and chitooligosaccharide (COS) via Maillard reaction was developed. The functional carrier exhibited good antioxidant activity and high encapsulation of curcumin (Cur). Enhanced antioxidant effect of Cur loaded in FG-COS conjugates (called FG–COS–Cur nanoparticles) was achieved, showing remarkable UV protection on Cur and enhanced intracellular antioxidant activity of FG–COS–Cur nanoparticles. Remarkably, FG–COS–Cur nanoparticles increased the cell viability of H(2)O(2)-induced oxidative damage Caco-2 cells, drastically reduced the levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH), and significantly increased intracellular antioxidant enzyme activities, which all exhibited a dose-response relationship. These findings suggested that the FG-COS conjugates with intrinsic antioxidant activity could effectively encapsulate Cur and improved bioavailability for hydrophobic active molecules in functional food field. |
---|