Cargando…
Exploring the relationship between autophagy and Gefitinib resistance in NSCLC by silencing PDLIM5 using ultrasound-targeted microbubble destruction technology
BACKGROUND: Ultrasound-targeted microbubble destruction (UTMD) technology is a new drug and gene delivery strategy. This study investigates novel ultrasound (US) sensitive siRNA-loaded nanobubbles (siRNA-NBs) to explore the relationship between PDLIM5 mediated autophagy and drug resistance developme...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9509593/ https://www.ncbi.nlm.nih.gov/pubmed/36154921 http://dx.doi.org/10.1186/s12935-022-02718-4 |
Sumario: | BACKGROUND: Ultrasound-targeted microbubble destruction (UTMD) technology is a new drug and gene delivery strategy. This study investigates novel ultrasound (US) sensitive siRNA-loaded nanobubbles (siRNA-NBs) to explore the relationship between PDLIM5 mediated autophagy and drug resistance development using epidermal growth factor tyrosine kinase inhibitors (EGFR-TKIs) in the treatment of non-small cell lung cancer (NSCLC). METHODS: US sensitive siRNA-NBs were designed to inhibit the expression of PDLIM5 in gefitinib-resistant human NSCLC PC9GR cells in vitro. The expression of autophagy-related proteins (P62 and LC3-II/I) and autophagosomes in PC9GR cells after PDLIM5 gene silencing were explored. RESULTS: US-sensitive PDLIM5-targeted siRNA-NBs were effectively delivered into PC9GR cells, inhibiting PDLIM5 expression, increasing LC3-II/I and p62 expressions and increasing autophagosomes in PC9GR cells in vitro. CONCLUSIONS: Using UTMD, US-sensitive siRNA-NBs have the potential as an ideal delivery vector to mediate highly effective RNA interference for NSCLC cells. Furthermore, PDLIM5 plays a role in the autophagy-mediated resistance in gefitinib-resistant PC9GR cells. |
---|