Cargando…

An integrative approach of digital image analysis and transcriptome profiling to explore potential predictive biomarkers for TGFβ blockade therapy

Increasing evidence suggests that the presence and spatial localization and distribution pattern of tumor infiltrating lymphocytes (TILs) is associate with response to immunotherapies. Recent studies have identified TGFβ activity and signaling as a determinant of T cell exclusion in the tumor microe...

Descripción completa

Detalles Bibliográficos
Autores principales: Pomponio, Robert, Tang, Qi, Mei, Anthony, Caron, Anne, Coulibaly, Bema, Theilhaber, Joachim, Rogers-Grazado, Maximilian, Sanicola-Nadel, Michele, Naimi, Souad, Olfati-Saber, Reza, Combeau, Cecile, Pollard, Jack, Lin, Tun Tun, Wang, Rui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513441/
https://www.ncbi.nlm.nih.gov/pubmed/36176910
http://dx.doi.org/10.1016/j.apsb.2022.03.013
Descripción
Sumario:Increasing evidence suggests that the presence and spatial localization and distribution pattern of tumor infiltrating lymphocytes (TILs) is associate with response to immunotherapies. Recent studies have identified TGFβ activity and signaling as a determinant of T cell exclusion in the tumor microenvironment and poor response to PD-1/PD-L1 blockade. Here we coupled the artificial intelligence (AI)-powered digital image analysis and gene expression profiling as an integrative approach to quantify distribution of TILs and characterize the associated TGFβ pathway activity. Analysis of T cell spatial distribution in the solid tumor biopsies revealed substantial differences in the distribution patterns. The digital image analysis approach achieves 74% concordance with the pathologist assessment for tumor-immune phenotypes. The transcriptomic profiling suggests that the TIL score was negatively correlated with TGFβ pathway activation, together with elevated TGFβ signaling activity observed in excluded and desert tumor phenotypes. The present results demonstrate that the automated digital pathology algorithm for quantitative analysis of CD8 immunohistochemistry image can successfully assign the tumor into one of three infiltration phenotypes: immune desert, immune excluded or immune inflamed. The association between “cold” tumor-immune phenotypes and TGFβ signature further demonstrates their potential as predictive biomarkers to identify appropriate patients that may benefit from TGFβ blockade.