Cargando…

Sustained glucagon receptor antagonism in insulin-deficient high-fat-fed mice

Discerning modification to the amino acid sequence of native glucagon can generate specific glucagon receptor (GCGR) antagonists, that include desHis(1)Pro(4)Glu(9)-glucagon and the acylated form desHis(1)Pro(4)Glu(9)(Lys(12)PAL)-glucagon. In the current study, we have evaluated the metabolic benefi...

Descripción completa

Detalles Bibliográficos
Autores principales: Lafferty, Ryan A, McShane, Laura M, Franklin, Zara J, Flatt, Peter R, O’Harte, Finbarr P M, Irwin, Nigel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bioscientifica Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513641/
https://www.ncbi.nlm.nih.gov/pubmed/36005280
http://dx.doi.org/10.1530/JOE-22-0106
_version_ 1784798113617149952
author Lafferty, Ryan A
McShane, Laura M
Franklin, Zara J
Flatt, Peter R
O’Harte, Finbarr P M
Irwin, Nigel
author_facet Lafferty, Ryan A
McShane, Laura M
Franklin, Zara J
Flatt, Peter R
O’Harte, Finbarr P M
Irwin, Nigel
author_sort Lafferty, Ryan A
collection PubMed
description Discerning modification to the amino acid sequence of native glucagon can generate specific glucagon receptor (GCGR) antagonists, that include desHis(1)Pro(4)Glu(9)-glucagon and the acylated form desHis(1)Pro(4)Glu(9)(Lys(12)PAL)-glucagon. In the current study, we have evaluated the metabolic benefits of once-daily injection of these peptide-based GCGR antagonists for 18 days in insulin-resistant high-fat-fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF-STZ mice. Administration of desHis(1)Pro(4)Glu(9)-glucagon moderately (P < 0.05) decreased STZ-induced elevations of food intake. Body weight was not different between groups of HFF-STZ mice and both treatment interventions delayed (P < 0.05) the onset of hyperglycaemia. The treatments reduced (P < 0.05–P < 0.001) circulating and pancreatic glucagon, whilst desHis(1)Pro(4)Glu(9)(Lys(12)PAL)-glucagon also substantially increased (P < 0.001) pancreatic insulin stores. Oral glucose tolerance was appreciably improved (P < 0.05) by both antagonists, despite the lack of augmentation of glucose-stimulated insulin release. Interestingly, positive effects on i.p. glucose tolerance were less obvious suggesting important beneficial effects on gut function. Metabolic benefits were accompanied by decreased (P < 0.05–P < 0.01) locomotor activity and increases (P < 0.001) in energy expenditure and respiratory exchange ratio in both treatment groups. In addition, desHis(1)Pro(4)Glu(9)-glucagon increased (P < 0.01–P < 0.001) O(2) consumption and CO(2) production. Together, these data provide further evidence that peptidic GCGR antagonists are effective treatment options for obesity-driven forms of diabetes, even when accompanied by insulin deficiency.
format Online
Article
Text
id pubmed-9513641
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Bioscientifica Ltd
record_format MEDLINE/PubMed
spelling pubmed-95136412022-09-28 Sustained glucagon receptor antagonism in insulin-deficient high-fat-fed mice Lafferty, Ryan A McShane, Laura M Franklin, Zara J Flatt, Peter R O’Harte, Finbarr P M Irwin, Nigel J Endocrinol Research Discerning modification to the amino acid sequence of native glucagon can generate specific glucagon receptor (GCGR) antagonists, that include desHis(1)Pro(4)Glu(9)-glucagon and the acylated form desHis(1)Pro(4)Glu(9)(Lys(12)PAL)-glucagon. In the current study, we have evaluated the metabolic benefits of once-daily injection of these peptide-based GCGR antagonists for 18 days in insulin-resistant high-fat-fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF-STZ mice. Administration of desHis(1)Pro(4)Glu(9)-glucagon moderately (P < 0.05) decreased STZ-induced elevations of food intake. Body weight was not different between groups of HFF-STZ mice and both treatment interventions delayed (P < 0.05) the onset of hyperglycaemia. The treatments reduced (P < 0.05–P < 0.001) circulating and pancreatic glucagon, whilst desHis(1)Pro(4)Glu(9)(Lys(12)PAL)-glucagon also substantially increased (P < 0.001) pancreatic insulin stores. Oral glucose tolerance was appreciably improved (P < 0.05) by both antagonists, despite the lack of augmentation of glucose-stimulated insulin release. Interestingly, positive effects on i.p. glucose tolerance were less obvious suggesting important beneficial effects on gut function. Metabolic benefits were accompanied by decreased (P < 0.05–P < 0.01) locomotor activity and increases (P < 0.001) in energy expenditure and respiratory exchange ratio in both treatment groups. In addition, desHis(1)Pro(4)Glu(9)-glucagon increased (P < 0.01–P < 0.001) O(2) consumption and CO(2) production. Together, these data provide further evidence that peptidic GCGR antagonists are effective treatment options for obesity-driven forms of diabetes, even when accompanied by insulin deficiency. Bioscientifica Ltd 2022-08-24 /pmc/articles/PMC9513641/ /pubmed/36005280 http://dx.doi.org/10.1530/JOE-22-0106 Text en © The authors https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License. (https://creativecommons.org/licenses/by/4.0/)
spellingShingle Research
Lafferty, Ryan A
McShane, Laura M
Franklin, Zara J
Flatt, Peter R
O’Harte, Finbarr P M
Irwin, Nigel
Sustained glucagon receptor antagonism in insulin-deficient high-fat-fed mice
title Sustained glucagon receptor antagonism in insulin-deficient high-fat-fed mice
title_full Sustained glucagon receptor antagonism in insulin-deficient high-fat-fed mice
title_fullStr Sustained glucagon receptor antagonism in insulin-deficient high-fat-fed mice
title_full_unstemmed Sustained glucagon receptor antagonism in insulin-deficient high-fat-fed mice
title_short Sustained glucagon receptor antagonism in insulin-deficient high-fat-fed mice
title_sort sustained glucagon receptor antagonism in insulin-deficient high-fat-fed mice
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513641/
https://www.ncbi.nlm.nih.gov/pubmed/36005280
http://dx.doi.org/10.1530/JOE-22-0106
work_keys_str_mv AT laffertyryana sustainedglucagonreceptorantagonismininsulindeficienthighfatfedmice
AT mcshanelauram sustainedglucagonreceptorantagonismininsulindeficienthighfatfedmice
AT franklinzaraj sustainedglucagonreceptorantagonismininsulindeficienthighfatfedmice
AT flattpeterr sustainedglucagonreceptorantagonismininsulindeficienthighfatfedmice
AT ohartefinbarrpm sustainedglucagonreceptorantagonismininsulindeficienthighfatfedmice
AT irwinnigel sustainedglucagonreceptorantagonismininsulindeficienthighfatfedmice