Cargando…

In vivo 3D profiling of site-specific human cancer cell morphotypes in zebrafish

Tissue microenvironments affect the functional states of cancer cells, but determining these influences in vivo has remained a challenge. We present a quantitative high-resolution imaging assay of single cancer cells in zebrafish xenografts to probe functional adaptation to variable cell-extrinsic c...

Descripción completa

Detalles Bibliográficos
Autores principales: Segal, Dagan, Mazloom-Farsibaf, Hanieh, Chang, Bo-Jui, Roudot, Philippe, Rajendran, Divya, Daetwyler, Stephan, Fiolka, Reto, Warren, Mikako, Amatruda, James F., Danuser, Gaudenz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516844/
https://www.ncbi.nlm.nih.gov/pubmed/36155740
http://dx.doi.org/10.1083/jcb.202109100
_version_ 1784798792050016256
author Segal, Dagan
Mazloom-Farsibaf, Hanieh
Chang, Bo-Jui
Roudot, Philippe
Rajendran, Divya
Daetwyler, Stephan
Fiolka, Reto
Warren, Mikako
Amatruda, James F.
Danuser, Gaudenz
author_facet Segal, Dagan
Mazloom-Farsibaf, Hanieh
Chang, Bo-Jui
Roudot, Philippe
Rajendran, Divya
Daetwyler, Stephan
Fiolka, Reto
Warren, Mikako
Amatruda, James F.
Danuser, Gaudenz
author_sort Segal, Dagan
collection PubMed
description Tissue microenvironments affect the functional states of cancer cells, but determining these influences in vivo has remained a challenge. We present a quantitative high-resolution imaging assay of single cancer cells in zebrafish xenografts to probe functional adaptation to variable cell-extrinsic cues and molecular interventions. Using cell morphology as a surrogate readout of cell functional states, we examine environmental influences on the morphotype distribution of Ewing Sarcoma, a pediatric cancer associated with the oncogene EWSR1-FLI1 and whose plasticity is thought to determine disease outcome through non-genomic mechanisms. Computer vision analysis reveals systematic shifts in the distribution of 3D morphotypes as a function of cell type and seeding site, as well as tissue-specific cellular organizations that recapitulate those observed in human tumors. Reduced expression of the EWSR1-FLI1 protein product causes a shift to more protrusive cells and decreased tissue specificity of the morphotype distribution. Overall, this work establishes a framework for a statistically robust study of cancer cell plasticity in diverse tissue microenvironments.
format Online
Article
Text
id pubmed-9516844
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-95168442023-03-26 In vivo 3D profiling of site-specific human cancer cell morphotypes in zebrafish Segal, Dagan Mazloom-Farsibaf, Hanieh Chang, Bo-Jui Roudot, Philippe Rajendran, Divya Daetwyler, Stephan Fiolka, Reto Warren, Mikako Amatruda, James F. Danuser, Gaudenz J Cell Biol Tools Tissue microenvironments affect the functional states of cancer cells, but determining these influences in vivo has remained a challenge. We present a quantitative high-resolution imaging assay of single cancer cells in zebrafish xenografts to probe functional adaptation to variable cell-extrinsic cues and molecular interventions. Using cell morphology as a surrogate readout of cell functional states, we examine environmental influences on the morphotype distribution of Ewing Sarcoma, a pediatric cancer associated with the oncogene EWSR1-FLI1 and whose plasticity is thought to determine disease outcome through non-genomic mechanisms. Computer vision analysis reveals systematic shifts in the distribution of 3D morphotypes as a function of cell type and seeding site, as well as tissue-specific cellular organizations that recapitulate those observed in human tumors. Reduced expression of the EWSR1-FLI1 protein product causes a shift to more protrusive cells and decreased tissue specificity of the morphotype distribution. Overall, this work establishes a framework for a statistically robust study of cancer cell plasticity in diverse tissue microenvironments. Rockefeller University Press 2022-09-26 /pmc/articles/PMC9516844/ /pubmed/36155740 http://dx.doi.org/10.1083/jcb.202109100 Text en © 2022 Segal et al. https://creativecommons.org/licenses/by-nc-sa/4.0/http://www.rupress.org/terms/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Tools
Segal, Dagan
Mazloom-Farsibaf, Hanieh
Chang, Bo-Jui
Roudot, Philippe
Rajendran, Divya
Daetwyler, Stephan
Fiolka, Reto
Warren, Mikako
Amatruda, James F.
Danuser, Gaudenz
In vivo 3D profiling of site-specific human cancer cell morphotypes in zebrafish
title In vivo 3D profiling of site-specific human cancer cell morphotypes in zebrafish
title_full In vivo 3D profiling of site-specific human cancer cell morphotypes in zebrafish
title_fullStr In vivo 3D profiling of site-specific human cancer cell morphotypes in zebrafish
title_full_unstemmed In vivo 3D profiling of site-specific human cancer cell morphotypes in zebrafish
title_short In vivo 3D profiling of site-specific human cancer cell morphotypes in zebrafish
title_sort in vivo 3d profiling of site-specific human cancer cell morphotypes in zebrafish
topic Tools
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516844/
https://www.ncbi.nlm.nih.gov/pubmed/36155740
http://dx.doi.org/10.1083/jcb.202109100
work_keys_str_mv AT segaldagan invivo3dprofilingofsitespecifichumancancercellmorphotypesinzebrafish
AT mazloomfarsibafhanieh invivo3dprofilingofsitespecifichumancancercellmorphotypesinzebrafish
AT changbojui invivo3dprofilingofsitespecifichumancancercellmorphotypesinzebrafish
AT roudotphilippe invivo3dprofilingofsitespecifichumancancercellmorphotypesinzebrafish
AT rajendrandivya invivo3dprofilingofsitespecifichumancancercellmorphotypesinzebrafish
AT daetwylerstephan invivo3dprofilingofsitespecifichumancancercellmorphotypesinzebrafish
AT fiolkareto invivo3dprofilingofsitespecifichumancancercellmorphotypesinzebrafish
AT warrenmikako invivo3dprofilingofsitespecifichumancancercellmorphotypesinzebrafish
AT amatrudajamesf invivo3dprofilingofsitespecifichumancancercellmorphotypesinzebrafish
AT danusergaudenz invivo3dprofilingofsitespecifichumancancercellmorphotypesinzebrafish