Cargando…
In vivo 3D profiling of site-specific human cancer cell morphotypes in zebrafish
Tissue microenvironments affect the functional states of cancer cells, but determining these influences in vivo has remained a challenge. We present a quantitative high-resolution imaging assay of single cancer cells in zebrafish xenografts to probe functional adaptation to variable cell-extrinsic c...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516844/ https://www.ncbi.nlm.nih.gov/pubmed/36155740 http://dx.doi.org/10.1083/jcb.202109100 |
_version_ | 1784798792050016256 |
---|---|
author | Segal, Dagan Mazloom-Farsibaf, Hanieh Chang, Bo-Jui Roudot, Philippe Rajendran, Divya Daetwyler, Stephan Fiolka, Reto Warren, Mikako Amatruda, James F. Danuser, Gaudenz |
author_facet | Segal, Dagan Mazloom-Farsibaf, Hanieh Chang, Bo-Jui Roudot, Philippe Rajendran, Divya Daetwyler, Stephan Fiolka, Reto Warren, Mikako Amatruda, James F. Danuser, Gaudenz |
author_sort | Segal, Dagan |
collection | PubMed |
description | Tissue microenvironments affect the functional states of cancer cells, but determining these influences in vivo has remained a challenge. We present a quantitative high-resolution imaging assay of single cancer cells in zebrafish xenografts to probe functional adaptation to variable cell-extrinsic cues and molecular interventions. Using cell morphology as a surrogate readout of cell functional states, we examine environmental influences on the morphotype distribution of Ewing Sarcoma, a pediatric cancer associated with the oncogene EWSR1-FLI1 and whose plasticity is thought to determine disease outcome through non-genomic mechanisms. Computer vision analysis reveals systematic shifts in the distribution of 3D morphotypes as a function of cell type and seeding site, as well as tissue-specific cellular organizations that recapitulate those observed in human tumors. Reduced expression of the EWSR1-FLI1 protein product causes a shift to more protrusive cells and decreased tissue specificity of the morphotype distribution. Overall, this work establishes a framework for a statistically robust study of cancer cell plasticity in diverse tissue microenvironments. |
format | Online Article Text |
id | pubmed-9516844 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-95168442023-03-26 In vivo 3D profiling of site-specific human cancer cell morphotypes in zebrafish Segal, Dagan Mazloom-Farsibaf, Hanieh Chang, Bo-Jui Roudot, Philippe Rajendran, Divya Daetwyler, Stephan Fiolka, Reto Warren, Mikako Amatruda, James F. Danuser, Gaudenz J Cell Biol Tools Tissue microenvironments affect the functional states of cancer cells, but determining these influences in vivo has remained a challenge. We present a quantitative high-resolution imaging assay of single cancer cells in zebrafish xenografts to probe functional adaptation to variable cell-extrinsic cues and molecular interventions. Using cell morphology as a surrogate readout of cell functional states, we examine environmental influences on the morphotype distribution of Ewing Sarcoma, a pediatric cancer associated with the oncogene EWSR1-FLI1 and whose plasticity is thought to determine disease outcome through non-genomic mechanisms. Computer vision analysis reveals systematic shifts in the distribution of 3D morphotypes as a function of cell type and seeding site, as well as tissue-specific cellular organizations that recapitulate those observed in human tumors. Reduced expression of the EWSR1-FLI1 protein product causes a shift to more protrusive cells and decreased tissue specificity of the morphotype distribution. Overall, this work establishes a framework for a statistically robust study of cancer cell plasticity in diverse tissue microenvironments. Rockefeller University Press 2022-09-26 /pmc/articles/PMC9516844/ /pubmed/36155740 http://dx.doi.org/10.1083/jcb.202109100 Text en © 2022 Segal et al. https://creativecommons.org/licenses/by-nc-sa/4.0/http://www.rupress.org/terms/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Tools Segal, Dagan Mazloom-Farsibaf, Hanieh Chang, Bo-Jui Roudot, Philippe Rajendran, Divya Daetwyler, Stephan Fiolka, Reto Warren, Mikako Amatruda, James F. Danuser, Gaudenz In vivo 3D profiling of site-specific human cancer cell morphotypes in zebrafish |
title | In vivo 3D profiling of site-specific human cancer cell morphotypes in zebrafish |
title_full | In vivo 3D profiling of site-specific human cancer cell morphotypes in zebrafish |
title_fullStr | In vivo 3D profiling of site-specific human cancer cell morphotypes in zebrafish |
title_full_unstemmed | In vivo 3D profiling of site-specific human cancer cell morphotypes in zebrafish |
title_short | In vivo 3D profiling of site-specific human cancer cell morphotypes in zebrafish |
title_sort | in vivo 3d profiling of site-specific human cancer cell morphotypes in zebrafish |
topic | Tools |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516844/ https://www.ncbi.nlm.nih.gov/pubmed/36155740 http://dx.doi.org/10.1083/jcb.202109100 |
work_keys_str_mv | AT segaldagan invivo3dprofilingofsitespecifichumancancercellmorphotypesinzebrafish AT mazloomfarsibafhanieh invivo3dprofilingofsitespecifichumancancercellmorphotypesinzebrafish AT changbojui invivo3dprofilingofsitespecifichumancancercellmorphotypesinzebrafish AT roudotphilippe invivo3dprofilingofsitespecifichumancancercellmorphotypesinzebrafish AT rajendrandivya invivo3dprofilingofsitespecifichumancancercellmorphotypesinzebrafish AT daetwylerstephan invivo3dprofilingofsitespecifichumancancercellmorphotypesinzebrafish AT fiolkareto invivo3dprofilingofsitespecifichumancancercellmorphotypesinzebrafish AT warrenmikako invivo3dprofilingofsitespecifichumancancercellmorphotypesinzebrafish AT amatrudajamesf invivo3dprofilingofsitespecifichumancancercellmorphotypesinzebrafish AT danusergaudenz invivo3dprofilingofsitespecifichumancancercellmorphotypesinzebrafish |