Cargando…

A molecularly engineered, broad-spectrum anti-coronavirus lectin inhibits SARS-CoV-2 and MERS-CoV infection in vivo

“Pan-coronavirus” antivirals targeting conserved viral components can be designed. Here, we show that the rationally engineered H84T-banana lectin (H84T-BanLec), which specifically recognizes high mannose found on viral proteins but seldom on healthy human cells, potently inhibits Middle East respir...

Descripción completa

Detalles Bibliográficos
Autores principales: Chan, Jasper Fuk-Woo, Oh, Yoo Jin, Yuan, Shuofeng, Chu, Hin, Yeung, Man-Lung, Canena, Daniel, Chan, Chris Chung-Sing, Poon, Vincent Kwok-Man, Chan, Chris Chun-Yiu, Zhang, Anna Jinxia, Cai, Jian-Piao, Ye, Zi-Wei, Wen, Lei, Yuen, Terrence Tsz-Tai, Chik, Kenn Ka-Heng, Shuai, Huiping, Wang, Yixin, Hou, Yuxin, Luo, Cuiting, Chan, Wan-Mui, Qin, Zhenzhi, Sit, Ko-Yung, Au, Wing-Kuk, Legendre, Maureen, Zhu, Rong, Hain, Lisa, Seferovic, Hannah, Tampé, Robert, To, Kelvin Kai-Wang, Chan, Kwok-Hung, Thomas, Dafydd Gareth, Klausberger, Miriam, Xu, Cheng, Moon, James J., Stadlmann, Johannes, Penninger, Josef M., Oostenbrink, Chris, Hinterdorfer, Peter, Yuen, Kwok-Yung, Markovitz, David M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519379/
https://www.ncbi.nlm.nih.gov/pubmed/36195094
http://dx.doi.org/10.1016/j.xcrm.2022.100774
Descripción
Sumario:“Pan-coronavirus” antivirals targeting conserved viral components can be designed. Here, we show that the rationally engineered H84T-banana lectin (H84T-BanLec), which specifically recognizes high mannose found on viral proteins but seldom on healthy human cells, potently inhibits Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (including Omicron), and other human-pathogenic coronaviruses at nanomolar concentrations. H84T-BanLec protects against MERS-CoV and SARS-CoV-2 infection in vivo. Importantly, intranasally and intraperitoneally administered H84T-BanLec are comparably effective. Mechanistic assays show that H84T-BanLec targets virus entry. High-speed atomic force microscopy depicts real-time multimolecular associations of H84T-BanLec dimers with the SARS-CoV-2 spike trimer. Single-molecule force spectroscopy demonstrates binding of H84T-BanLec to multiple SARS-CoV-2 spike mannose sites with high affinity and that H84T-BanLec competes with SARS-CoV-2 spike for binding to cellular ACE2. Modeling experiments identify distinct high-mannose glycans in spike recognized by H84T-BanLec. The multiple H84T-BanLec binding sites on spike likely account for the drug compound’s broad-spectrum antiviral activity and the lack of resistant mutants.