Cargando…
A voting-based ensemble feature network for semiconductor wafer defect classification
Semiconductor wafer defects severely affect product development. In order to reduce the occurrence of defects, it is necessary to identify why they occur, and it can be inferred by analyzing the patterns of defects. Automatic defect classification (ADC) is used to analyze large amounts of samples. A...
Autores principales: | Misra, Sampa, Kim, Donggyu, Kim, Jongbeom, Shin, Woncheol, Kim, Chulhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519991/ https://www.ncbi.nlm.nih.gov/pubmed/36171470 http://dx.doi.org/10.1038/s41598-022-20630-9 |
Ejemplares similares
-
Efficient Convolutional Neural Networks for Semiconductor Wafer Bin Map Classification
por: Shin, Eunmi, et al.
Publicado: (2023) -
Voting Ensemble Approach for Enhancing Alzheimer’s Disease Classification
por: Chatterjee, Subhajit, et al.
Publicado: (2022) -
Cancer Classification Utilizing Voting Classifier with Ensemble Feature Selection Method and Transcriptomic Data
por: Khatun, Rabea, et al.
Publicado: (2023) -
Ranking routes in semiconductor wafer fabs
por: Gupta, Shreya, et al.
Publicado: (2023) -
Deep learning‐based multimodal fusion network for segmentation and classification of breast cancers using B‐mode and elastography ultrasound images
por: Misra, Sampa, et al.
Publicado: (2022)