Cargando…
A novel automated morphological analysis of Iba1+ microglia using a deep learning assisted model
There is growing evidence for the key role of microglial functional state in brain pathophysiology. Consequently, there is a need for efficient automated methods to measure the morphological changes distinctive of microglia functional states in research settings. Currently, many commonly used automa...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520629/ https://www.ncbi.nlm.nih.gov/pubmed/36187297 http://dx.doi.org/10.3389/fncel.2022.944875 |
_version_ | 1784799667900383232 |
---|---|
author | Stetzik, Lucas Mercado, Gabriela Smith, Lindsey George, Sonia Quansah, Emmanuel Luda, Katarzyna Schulz, Emily Meyerdirk, Lindsay Lindquist, Allison Bergsma, Alexis Jones, Russell G. Brundin, Lena Henderson, Michael X. Pospisilik, John Andrew Brundin, Patrik |
author_facet | Stetzik, Lucas Mercado, Gabriela Smith, Lindsey George, Sonia Quansah, Emmanuel Luda, Katarzyna Schulz, Emily Meyerdirk, Lindsay Lindquist, Allison Bergsma, Alexis Jones, Russell G. Brundin, Lena Henderson, Michael X. Pospisilik, John Andrew Brundin, Patrik |
author_sort | Stetzik, Lucas |
collection | PubMed |
description | There is growing evidence for the key role of microglial functional state in brain pathophysiology. Consequently, there is a need for efficient automated methods to measure the morphological changes distinctive of microglia functional states in research settings. Currently, many commonly used automated methods can be subject to sample representation bias, time consuming imaging, specific hardware requirements and difficulty in maintaining an accurate comparison across research environments. To overcome these issues, we use commercially available deep learning tools Aiforia(®) Cloud (Aifoira Inc., Cambridge, MA, United States) to quantify microglial morphology and cell counts from histopathological slides of Iba1 stained tissue sections. We provide evidence for the effective application of this method across a range of independently collected datasets in mouse models of viral infection and Parkinson’s disease. Additionally, we provide a comprehensive workflow with training details and annotation strategies by feature layer that can be used as a guide to generate new models. In addition, all models described in this work are available within the Aiforia(®) platform for study-specific adaptation and validation. |
format | Online Article Text |
id | pubmed-9520629 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95206292022-09-30 A novel automated morphological analysis of Iba1+ microglia using a deep learning assisted model Stetzik, Lucas Mercado, Gabriela Smith, Lindsey George, Sonia Quansah, Emmanuel Luda, Katarzyna Schulz, Emily Meyerdirk, Lindsay Lindquist, Allison Bergsma, Alexis Jones, Russell G. Brundin, Lena Henderson, Michael X. Pospisilik, John Andrew Brundin, Patrik Front Cell Neurosci Neuroscience There is growing evidence for the key role of microglial functional state in brain pathophysiology. Consequently, there is a need for efficient automated methods to measure the morphological changes distinctive of microglia functional states in research settings. Currently, many commonly used automated methods can be subject to sample representation bias, time consuming imaging, specific hardware requirements and difficulty in maintaining an accurate comparison across research environments. To overcome these issues, we use commercially available deep learning tools Aiforia(®) Cloud (Aifoira Inc., Cambridge, MA, United States) to quantify microglial morphology and cell counts from histopathological slides of Iba1 stained tissue sections. We provide evidence for the effective application of this method across a range of independently collected datasets in mouse models of viral infection and Parkinson’s disease. Additionally, we provide a comprehensive workflow with training details and annotation strategies by feature layer that can be used as a guide to generate new models. In addition, all models described in this work are available within the Aiforia(®) platform for study-specific adaptation and validation. Frontiers Media S.A. 2022-09-15 /pmc/articles/PMC9520629/ /pubmed/36187297 http://dx.doi.org/10.3389/fncel.2022.944875 Text en Copyright © 2022 Stetzik, Mercado, Smith, George, Quansah, Luda, Schulz, Meyerdirk, Lindquist, Bergsma, Jones, Brundin, Henderson, Pospisilik and Brundin. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Stetzik, Lucas Mercado, Gabriela Smith, Lindsey George, Sonia Quansah, Emmanuel Luda, Katarzyna Schulz, Emily Meyerdirk, Lindsay Lindquist, Allison Bergsma, Alexis Jones, Russell G. Brundin, Lena Henderson, Michael X. Pospisilik, John Andrew Brundin, Patrik A novel automated morphological analysis of Iba1+ microglia using a deep learning assisted model |
title | A novel automated morphological analysis of Iba1+ microglia using a deep learning assisted model |
title_full | A novel automated morphological analysis of Iba1+ microglia using a deep learning assisted model |
title_fullStr | A novel automated morphological analysis of Iba1+ microglia using a deep learning assisted model |
title_full_unstemmed | A novel automated morphological analysis of Iba1+ microglia using a deep learning assisted model |
title_short | A novel automated morphological analysis of Iba1+ microglia using a deep learning assisted model |
title_sort | novel automated morphological analysis of iba1+ microglia using a deep learning assisted model |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520629/ https://www.ncbi.nlm.nih.gov/pubmed/36187297 http://dx.doi.org/10.3389/fncel.2022.944875 |
work_keys_str_mv | AT stetziklucas anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT mercadogabriela anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT smithlindsey anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT georgesonia anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT quansahemmanuel anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT ludakatarzyna anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT schulzemily anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT meyerdirklindsay anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT lindquistallison anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT bergsmaalexis anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT jonesrussellg anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT brundinlena anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT hendersonmichaelx anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT pospisilikjohnandrew anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT brundinpatrik anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT stetziklucas novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT mercadogabriela novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT smithlindsey novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT georgesonia novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT quansahemmanuel novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT ludakatarzyna novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT schulzemily novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT meyerdirklindsay novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT lindquistallison novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT bergsmaalexis novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT jonesrussellg novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT brundinlena novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT hendersonmichaelx novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT pospisilikjohnandrew novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel AT brundinpatrik novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel |