Cargando…

A novel automated morphological analysis of Iba1+ microglia using a deep learning assisted model

There is growing evidence for the key role of microglial functional state in brain pathophysiology. Consequently, there is a need for efficient automated methods to measure the morphological changes distinctive of microglia functional states in research settings. Currently, many commonly used automa...

Descripción completa

Detalles Bibliográficos
Autores principales: Stetzik, Lucas, Mercado, Gabriela, Smith, Lindsey, George, Sonia, Quansah, Emmanuel, Luda, Katarzyna, Schulz, Emily, Meyerdirk, Lindsay, Lindquist, Allison, Bergsma, Alexis, Jones, Russell G., Brundin, Lena, Henderson, Michael X., Pospisilik, John Andrew, Brundin, Patrik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520629/
https://www.ncbi.nlm.nih.gov/pubmed/36187297
http://dx.doi.org/10.3389/fncel.2022.944875
_version_ 1784799667900383232
author Stetzik, Lucas
Mercado, Gabriela
Smith, Lindsey
George, Sonia
Quansah, Emmanuel
Luda, Katarzyna
Schulz, Emily
Meyerdirk, Lindsay
Lindquist, Allison
Bergsma, Alexis
Jones, Russell G.
Brundin, Lena
Henderson, Michael X.
Pospisilik, John Andrew
Brundin, Patrik
author_facet Stetzik, Lucas
Mercado, Gabriela
Smith, Lindsey
George, Sonia
Quansah, Emmanuel
Luda, Katarzyna
Schulz, Emily
Meyerdirk, Lindsay
Lindquist, Allison
Bergsma, Alexis
Jones, Russell G.
Brundin, Lena
Henderson, Michael X.
Pospisilik, John Andrew
Brundin, Patrik
author_sort Stetzik, Lucas
collection PubMed
description There is growing evidence for the key role of microglial functional state in brain pathophysiology. Consequently, there is a need for efficient automated methods to measure the morphological changes distinctive of microglia functional states in research settings. Currently, many commonly used automated methods can be subject to sample representation bias, time consuming imaging, specific hardware requirements and difficulty in maintaining an accurate comparison across research environments. To overcome these issues, we use commercially available deep learning tools Aiforia(®) Cloud (Aifoira Inc., Cambridge, MA, United States) to quantify microglial morphology and cell counts from histopathological slides of Iba1 stained tissue sections. We provide evidence for the effective application of this method across a range of independently collected datasets in mouse models of viral infection and Parkinson’s disease. Additionally, we provide a comprehensive workflow with training details and annotation strategies by feature layer that can be used as a guide to generate new models. In addition, all models described in this work are available within the Aiforia(®) platform for study-specific adaptation and validation.
format Online
Article
Text
id pubmed-9520629
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-95206292022-09-30 A novel automated morphological analysis of Iba1+ microglia using a deep learning assisted model Stetzik, Lucas Mercado, Gabriela Smith, Lindsey George, Sonia Quansah, Emmanuel Luda, Katarzyna Schulz, Emily Meyerdirk, Lindsay Lindquist, Allison Bergsma, Alexis Jones, Russell G. Brundin, Lena Henderson, Michael X. Pospisilik, John Andrew Brundin, Patrik Front Cell Neurosci Neuroscience There is growing evidence for the key role of microglial functional state in brain pathophysiology. Consequently, there is a need for efficient automated methods to measure the morphological changes distinctive of microglia functional states in research settings. Currently, many commonly used automated methods can be subject to sample representation bias, time consuming imaging, specific hardware requirements and difficulty in maintaining an accurate comparison across research environments. To overcome these issues, we use commercially available deep learning tools Aiforia(®) Cloud (Aifoira Inc., Cambridge, MA, United States) to quantify microglial morphology and cell counts from histopathological slides of Iba1 stained tissue sections. We provide evidence for the effective application of this method across a range of independently collected datasets in mouse models of viral infection and Parkinson’s disease. Additionally, we provide a comprehensive workflow with training details and annotation strategies by feature layer that can be used as a guide to generate new models. In addition, all models described in this work are available within the Aiforia(®) platform for study-specific adaptation and validation. Frontiers Media S.A. 2022-09-15 /pmc/articles/PMC9520629/ /pubmed/36187297 http://dx.doi.org/10.3389/fncel.2022.944875 Text en Copyright © 2022 Stetzik, Mercado, Smith, George, Quansah, Luda, Schulz, Meyerdirk, Lindquist, Bergsma, Jones, Brundin, Henderson, Pospisilik and Brundin. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Stetzik, Lucas
Mercado, Gabriela
Smith, Lindsey
George, Sonia
Quansah, Emmanuel
Luda, Katarzyna
Schulz, Emily
Meyerdirk, Lindsay
Lindquist, Allison
Bergsma, Alexis
Jones, Russell G.
Brundin, Lena
Henderson, Michael X.
Pospisilik, John Andrew
Brundin, Patrik
A novel automated morphological analysis of Iba1+ microglia using a deep learning assisted model
title A novel automated morphological analysis of Iba1+ microglia using a deep learning assisted model
title_full A novel automated morphological analysis of Iba1+ microglia using a deep learning assisted model
title_fullStr A novel automated morphological analysis of Iba1+ microglia using a deep learning assisted model
title_full_unstemmed A novel automated morphological analysis of Iba1+ microglia using a deep learning assisted model
title_short A novel automated morphological analysis of Iba1+ microglia using a deep learning assisted model
title_sort novel automated morphological analysis of iba1+ microglia using a deep learning assisted model
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520629/
https://www.ncbi.nlm.nih.gov/pubmed/36187297
http://dx.doi.org/10.3389/fncel.2022.944875
work_keys_str_mv AT stetziklucas anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT mercadogabriela anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT smithlindsey anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT georgesonia anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT quansahemmanuel anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT ludakatarzyna anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT schulzemily anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT meyerdirklindsay anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT lindquistallison anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT bergsmaalexis anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT jonesrussellg anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT brundinlena anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT hendersonmichaelx anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT pospisilikjohnandrew anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT brundinpatrik anovelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT stetziklucas novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT mercadogabriela novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT smithlindsey novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT georgesonia novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT quansahemmanuel novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT ludakatarzyna novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT schulzemily novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT meyerdirklindsay novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT lindquistallison novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT bergsmaalexis novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT jonesrussellg novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT brundinlena novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT hendersonmichaelx novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT pospisilikjohnandrew novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel
AT brundinpatrik novelautomatedmorphologicalanalysisofiba1microgliausingadeeplearningassistedmodel