Cargando…
The alternative lengthening of telomeres mechanism jeopardizes telomere integrity if not properly restricted
A substantial number of human cancers are telomerase-negative and elongate physiologically damaged telomeres through a break-induced replication (BIR)-based mechanism known as alternative lengthening of telomeres (ALT). We recently demonstrated that inhibiting the transcription of the telomeric long...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9522348/ https://www.ncbi.nlm.nih.gov/pubmed/36122232 http://dx.doi.org/10.1073/pnas.2208669119 |
Sumario: | A substantial number of human cancers are telomerase-negative and elongate physiologically damaged telomeres through a break-induced replication (BIR)-based mechanism known as alternative lengthening of telomeres (ALT). We recently demonstrated that inhibiting the transcription of the telomeric long noncoding RNA TERRA suppresses telomere damage and ALT features, indicating that telomere transcription is a main trigger of ALT activity. Here we show that experimentally increased TERRA transcription not only increases ALT features, as expected, but also causes rapid loss of telomeric DNA through a pathway that requires the endonuclease Mus81. Our data indicate that the ALT mechanism can endanger telomere integrity if not properly controlled and point to TERRA transcription as a uniquely versatile target for therapy. |
---|