Cargando…

Modular derivation of diverse, regionally discrete human posterior CNS neurons enables discovery of transcriptomic patterns

Our inability to derive the neuronal diversity that comprises the posterior central nervous system (pCNS) using human pluripotent stem cells (hPSCs) poses an impediment to understanding human neurodevelopment and disease in the hindbrain and spinal cord. Here, we establish a modular, monolayer diffe...

Descripción completa

Detalles Bibliográficos
Autores principales: Iyer, Nisha R., Shin, Junha, Cuskey, Stephanie, Tian, Yucheng, Nicol, Noah R., Doersch, Tessa E., Seipel, Frank, McCalla, Sunnie Grace, Roy, Sushmita, Ashton, Randolph S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9524835/
https://www.ncbi.nlm.nih.gov/pubmed/36179024
http://dx.doi.org/10.1126/sciadv.abn7430
_version_ 1784800576908820480
author Iyer, Nisha R.
Shin, Junha
Cuskey, Stephanie
Tian, Yucheng
Nicol, Noah R.
Doersch, Tessa E.
Seipel, Frank
McCalla, Sunnie Grace
Roy, Sushmita
Ashton, Randolph S.
author_facet Iyer, Nisha R.
Shin, Junha
Cuskey, Stephanie
Tian, Yucheng
Nicol, Noah R.
Doersch, Tessa E.
Seipel, Frank
McCalla, Sunnie Grace
Roy, Sushmita
Ashton, Randolph S.
author_sort Iyer, Nisha R.
collection PubMed
description Our inability to derive the neuronal diversity that comprises the posterior central nervous system (pCNS) using human pluripotent stem cells (hPSCs) poses an impediment to understanding human neurodevelopment and disease in the hindbrain and spinal cord. Here, we establish a modular, monolayer differentiation paradigm that recapitulates both rostrocaudal (R/C) and dorsoventral (D/V) patterning, enabling derivation of diverse pCNS neurons with discrete regional specificity. First, neuromesodermal progenitors (NMPs) with discrete HOX profiles are converted to pCNS progenitors (pCNSPs). Then, by tuning D/V signaling, pCNSPs are directed to locomotor or somatosensory neurons. Expansive single-cell RNA-sequencing (scRNA-seq) analysis coupled with a novel computational pipeline allowed us to detect hundreds of transcriptional markers within region-specific phenotypes, enabling discovery of gene expression patterns across R/C and D/V developmental axes. These findings highlight the potential of these resources to advance a mechanistic understanding of pCNS development, enhance in vitro models, and inform therapeutic strategies.
format Online
Article
Text
id pubmed-9524835
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-95248352022-10-13 Modular derivation of diverse, regionally discrete human posterior CNS neurons enables discovery of transcriptomic patterns Iyer, Nisha R. Shin, Junha Cuskey, Stephanie Tian, Yucheng Nicol, Noah R. Doersch, Tessa E. Seipel, Frank McCalla, Sunnie Grace Roy, Sushmita Ashton, Randolph S. Sci Adv Biomedicine and Life Sciences Our inability to derive the neuronal diversity that comprises the posterior central nervous system (pCNS) using human pluripotent stem cells (hPSCs) poses an impediment to understanding human neurodevelopment and disease in the hindbrain and spinal cord. Here, we establish a modular, monolayer differentiation paradigm that recapitulates both rostrocaudal (R/C) and dorsoventral (D/V) patterning, enabling derivation of diverse pCNS neurons with discrete regional specificity. First, neuromesodermal progenitors (NMPs) with discrete HOX profiles are converted to pCNS progenitors (pCNSPs). Then, by tuning D/V signaling, pCNSPs are directed to locomotor or somatosensory neurons. Expansive single-cell RNA-sequencing (scRNA-seq) analysis coupled with a novel computational pipeline allowed us to detect hundreds of transcriptional markers within region-specific phenotypes, enabling discovery of gene expression patterns across R/C and D/V developmental axes. These findings highlight the potential of these resources to advance a mechanistic understanding of pCNS development, enhance in vitro models, and inform therapeutic strategies. American Association for the Advancement of Science 2022-09-30 /pmc/articles/PMC9524835/ /pubmed/36179024 http://dx.doi.org/10.1126/sciadv.abn7430 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Biomedicine and Life Sciences
Iyer, Nisha R.
Shin, Junha
Cuskey, Stephanie
Tian, Yucheng
Nicol, Noah R.
Doersch, Tessa E.
Seipel, Frank
McCalla, Sunnie Grace
Roy, Sushmita
Ashton, Randolph S.
Modular derivation of diverse, regionally discrete human posterior CNS neurons enables discovery of transcriptomic patterns
title Modular derivation of diverse, regionally discrete human posterior CNS neurons enables discovery of transcriptomic patterns
title_full Modular derivation of diverse, regionally discrete human posterior CNS neurons enables discovery of transcriptomic patterns
title_fullStr Modular derivation of diverse, regionally discrete human posterior CNS neurons enables discovery of transcriptomic patterns
title_full_unstemmed Modular derivation of diverse, regionally discrete human posterior CNS neurons enables discovery of transcriptomic patterns
title_short Modular derivation of diverse, regionally discrete human posterior CNS neurons enables discovery of transcriptomic patterns
title_sort modular derivation of diverse, regionally discrete human posterior cns neurons enables discovery of transcriptomic patterns
topic Biomedicine and Life Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9524835/
https://www.ncbi.nlm.nih.gov/pubmed/36179024
http://dx.doi.org/10.1126/sciadv.abn7430
work_keys_str_mv AT iyernishar modularderivationofdiverseregionallydiscretehumanposteriorcnsneuronsenablesdiscoveryoftranscriptomicpatterns
AT shinjunha modularderivationofdiverseregionallydiscretehumanposteriorcnsneuronsenablesdiscoveryoftranscriptomicpatterns
AT cuskeystephanie modularderivationofdiverseregionallydiscretehumanposteriorcnsneuronsenablesdiscoveryoftranscriptomicpatterns
AT tianyucheng modularderivationofdiverseregionallydiscretehumanposteriorcnsneuronsenablesdiscoveryoftranscriptomicpatterns
AT nicolnoahr modularderivationofdiverseregionallydiscretehumanposteriorcnsneuronsenablesdiscoveryoftranscriptomicpatterns
AT doerschtessae modularderivationofdiverseregionallydiscretehumanposteriorcnsneuronsenablesdiscoveryoftranscriptomicpatterns
AT seipelfrank modularderivationofdiverseregionallydiscretehumanposteriorcnsneuronsenablesdiscoveryoftranscriptomicpatterns
AT mccallasunniegrace modularderivationofdiverseregionallydiscretehumanposteriorcnsneuronsenablesdiscoveryoftranscriptomicpatterns
AT roysushmita modularderivationofdiverseregionallydiscretehumanposteriorcnsneuronsenablesdiscoveryoftranscriptomicpatterns
AT ashtonrandolphs modularderivationofdiverseregionallydiscretehumanposteriorcnsneuronsenablesdiscoveryoftranscriptomicpatterns