Cargando…
StackPR is a new computational approach for large-scale identification of progesterone receptor antagonists using the stacking strategy
Progesterone receptors (PRs) are implicated in various cancers since their presence/absence can determine clinical outcomes. The overstimulation of progesterone can facilitate oncogenesis and thus, its modulation through PR inhibition is urgently needed. To address this issue, a novel stacked ensemb...
Autores principales: | Schaduangrat, Nalini, Anuwongcharoen, Nuttapat, Moni, Mohammad Ali, Lio’, Pietro, Charoenkwan, Phasit, Shoombuatong, Watshara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525257/ https://www.ncbi.nlm.nih.gov/pubmed/36180453 http://dx.doi.org/10.1038/s41598-022-20143-5 |
Ejemplares similares
-
DeepAR: a novel deep learning-based hybrid framework for the interpretable prediction of androgen receptor antagonists
por: Schaduangrat, Nalini, et al.
Publicado: (2023) -
StackTTCA: a stacking ensemble learning-based framework for accurate and high-throughput identification of tumor T cell antigens
por: Charoenkwan, Phasit, et al.
Publicado: (2023) -
Computational prediction and interpretation of druggable proteins using a stacked ensemble-learning framework
por: Charoenkwan, Phasit, et al.
Publicado: (2022) -
TIPred: a novel stacked ensemble approach for the accelerated discovery of tyrosinase inhibitory peptides
por: Charoenkwan, Phasit, et al.
Publicado: (2023) -
iAMAP-SCM: A Novel
Computational Tool for Large-Scale
Identification of Antimalarial Peptides Using Estimated Propensity
Scores of Dipeptides
por: Charoenkwan, Phasit, et al.
Publicado: (2022)