Cargando…

Machine learning approaches for predicting arsenic adsorption from water using porous metal–organic frameworks

Arsenic in drinking water is a serious threat for human health due to its toxic nature and therefore, its eliminating is highly necessary. In this study, the ability of different novel and robust machine learning (ML) approaches, including Light Gradient Boosting Machine (LightGBM), Extreme Gradient...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdi, Jafar, Mazloom, Golshan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525301/
https://www.ncbi.nlm.nih.gov/pubmed/36180503
http://dx.doi.org/10.1038/s41598-022-20762-y