Cargando…
Machine learning approaches for predicting arsenic adsorption from water using porous metal–organic frameworks
Arsenic in drinking water is a serious threat for human health due to its toxic nature and therefore, its eliminating is highly necessary. In this study, the ability of different novel and robust machine learning (ML) approaches, including Light Gradient Boosting Machine (LightGBM), Extreme Gradient...
Autores principales: | Abdi, Jafar, Mazloom, Golshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525301/ https://www.ncbi.nlm.nih.gov/pubmed/36180503 http://dx.doi.org/10.1038/s41598-022-20762-y |
Ejemplares similares
-
Modeling of CO(2) adsorption capacity by porous metal organic frameworks using advanced decision tree-based models
por: Abdi, Jafar, et al.
Publicado: (2021) -
Estimation of the flow rate of pyrolysis gasoline, ethylene, and propylene in an industrial olefin plant using machine learning approaches
por: Abdi, Jafar, et al.
Publicado: (2023) -
Hydroxyl porous aromatic frameworks for efficient adsorption of organic micropollutants in water
por: Mo, Chen, et al.
Publicado: (2020) -
Porous silicon functionalization for possible arsenic adsorption
por: Balderas-Valadez, Ruth Fabiola, et al.
Publicado: (2014) -
Linker Functionalization Strategy for Water Adsorption in Metal–Organic Frameworks
por: Giappa, Rafaela Maria, et al.
Publicado: (2022)