Cargando…
Potential Functional Food Products and Molecular Mechanisms of Portulaca Oleracea L. on Anticancer Activity: A Review
Portulaca oleracea Linn. (P. oleracea L.) has recently gained attention as a functional food due to the chemical composition of this plant regarding bioactive compounds. The special attention to the use of P. oleracea as an ingredient in functional food products is also due to the promotion of susta...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526644/ https://www.ncbi.nlm.nih.gov/pubmed/36193066 http://dx.doi.org/10.1155/2022/7235412 |
Sumario: | Portulaca oleracea Linn. (P. oleracea L.) has recently gained attention as a functional food due to the chemical composition of this plant regarding bioactive compounds. The special attention to the use of P. oleracea as an ingredient in functional food products is also due to the promotion of sustainable food. It is an unconventional food plant, and its consumption may contribute to preserving biodiversity due to its cultivation in a polyculture system. Food sovereignty may be achieved, among other strategies, with the consumption of unconventional food plants that are more resistant in nature and easily cultivated in small places. P. oleracea grows spontaneously and may be found in streets and sidewalks, or it may be cultivated with seeds and cuttings propagation. The culinary versatility of P. oleracea opens up opportunities to explore the development of sustainable, functional food products. This mini-review shows that functional food products developed from P. oleracea are already available at the research level, but it is expected that more scientific literature focusing on the development of P. oleracea functional products with proven anticancer activities may be released in the near future. Polysaccharides, some phenolic compounds, alkaloids, and cerebrosides are associated with the inhibition and prevention of carcinogenesis through in vitro and in vivo investigations. The anticancer activities of P. oleracea, its bioactive compounds, and the involved molecular mechanisms have been reported in the literature. The importance of further elucidating the cancer inhibition mechanisms is in the interest of forthcoming applications in the development of food products with anticancer properties for implementation in the human diet. |
---|