Cargando…
MonoDCN: Monocular 3D object detection based on dynamic convolution
3D object detection is vital in the environment perception of autonomous driving. The current monocular 3D object detection technology mainly uses RGB images and pseudo radar point clouds as input. The methods of taking RGB images as input need to learn with geometric constraints and ignore the dept...
Autores principales: | Qu, Shenming, Yang, Xinyu, Gao, Yiming, Liang, Shengbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9531824/ https://www.ncbi.nlm.nih.gov/pubmed/36194608 http://dx.doi.org/10.1371/journal.pone.0275438 |
Ejemplares similares
-
Competition for roadside camera monocular 3D object detection
por: Jia, Jinrang, et al.
Publicado: (2023) -
GAC3D: improving monocular 3D object detection with ground-guide model and adaptive convolution
por: Bui, Minh-Quan Viet, et al.
Publicado: (2021) -
Uncertainty Prediction for Monocular 3D Object Detection
por: Mun, Junghwan, et al.
Publicado: (2023) -
eGAC3D: enhancing depth adaptive convolution and depth estimation for monocular 3D object pose detection
por: Ngo, Duc Tuan, et al.
Publicado: (2022) -
Monocular Vision-Based Underwater Object Detection
por: Chen, Zhe, et al.
Publicado: (2017)