Cargando…
A comparison of deep-learning-based inpainting techniques for experimental X-ray scattering
The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X-ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U-Nets, partial convolution neural networks and mixed-s...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533742/ https://www.ncbi.nlm.nih.gov/pubmed/36249508 http://dx.doi.org/10.1107/S1600576722007105 |