Cargando…
A comparison of deep-learning-based inpainting techniques for experimental X-ray scattering
The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X-ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U-Nets, partial convolution neural networks and mixed-s...
Autores principales: | Chavez, Tanny, Roberts, Eric J., Zwart, Petrus H., Hexemer, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533742/ https://www.ncbi.nlm.nih.gov/pubmed/36249508 http://dx.doi.org/10.1107/S1600576722007105 |
Ejemplares similares
-
Operational properties of fluctuation X-ray scattering data
por: Malmerberg, Erik, et al.
Publicado: (2015) -
Ab initio structure determination from experimental fluctuation X-ray scattering data
por: Pande, Kanupriya, et al.
Publicado: (2018) -
Gaussian diffusion sinogram inpainting for X-ray CT metal artifact reduction
por: Peng, Chengtao, et al.
Publicado: (2017) -
GPU-accelerated multitiered iterative phasing algorithm for fluctuation X-ray scattering
por: Kommera, Pranay Reddy, et al.
Publicado: (2021) -
Deep learning-Based 3D inpainting of brain MR images
por: Kang, Seung Kwan, et al.
Publicado: (2021)