Cargando…
Forecasting oil commodity spot price in a data-rich environment
Statistical properties that vary with time represent a challenge for time series forecasting. This paper proposes a change point-adaptive-RNN (CP-ADARNN) framework to predict crude oil prices with high-dimensional monthly variables. We first detect the structural breaks in predictors using the chang...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534472/ https://www.ncbi.nlm.nih.gov/pubmed/36217322 http://dx.doi.org/10.1007/s10479-022-05004-8 |