Cargando…
Forecasting oil commodity spot price in a data-rich environment
Statistical properties that vary with time represent a challenge for time series forecasting. This paper proposes a change point-adaptive-RNN (CP-ADARNN) framework to predict crude oil prices with high-dimensional monthly variables. We first detect the structural breaks in predictors using the chang...
Autores principales: | Boubaker, Sabri, Liu, Zhenya, Zhang, Yifan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534472/ https://www.ncbi.nlm.nih.gov/pubmed/36217322 http://dx.doi.org/10.1007/s10479-022-05004-8 |
Ejemplares similares
-
Forecasting commodity prices: empirical evidence using deep learning tools
por: Ben Ameur, Hachmi, et al.
Publicado: (2023) -
On the enrichment of time series with textual data for forecasting agricultural commodity prices
por: Reis Filho, Ivan José, et al.
Publicado: (2022) -
Commodity dynamism in the COVID-19 crisis: Are gold, oil, and stock commodity prices, symmetrical?
por: Sadiq, Muhammad, et al.
Publicado: (2022) -
COVID−19 and oil price risk exposure
por: Akhtaruzzaman, Md, et al.
Publicado: (2021) -
Forecasting the price of crude oil
por: Bollapragada, Ramesh, et al.
Publicado: (2021)