Cargando…
COVID‐19 CT image segmentation based on improved Res2Net
PURPOSE: Corona virus disease 2019 (COVID‐19) is threatening the health of the global people and bringing great losses to our economy and society. However, computed tomography (CT) image segmentation can make clinicians quickly identify the COVID‐19‐infected regions. Accurate segmentation infection...
Autores principales: | Liu, Shangwang, Tang, Xiufang, Cai, Tongbo, Zhang, Yangyang, Wang, Changgeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9538682/ https://www.ncbi.nlm.nih.gov/pubmed/35916116 http://dx.doi.org/10.1002/mp.15882 |
Ejemplares similares
-
Visual Recognition of Traffic Signs in Natural Scenes Based on Improved RetinaNet
por: Liu, Shangwang, et al.
Publicado: (2022) -
COVID-19 diagnosis via chest X-ray image classification based on multiscale class residual attention
por: Liu, Shangwang, et al.
Publicado: (2022) -
ResBCDU-Net: A Deep Learning Framework for Lung CT Image Segmentation
por: Jalali, Yeganeh, et al.
Publicado: (2021) -
Automatic renal mass segmentation and classification on CT images based on 3D U-Net and ResNet algorithms
por: Zhao, Tongtong, et al.
Publicado: (2023) -
Contrast-enhanced magnetic resonance image segmentation based on improved U-Net and Inception-ResNet in the diagnosis of spinal metastases
por: Wang, Hai, et al.
Publicado: (2023)