Cargando…
Intramolecular Tricarbonyl‐Ene Reactions and α‐Hydroxy‐β‐Diketone Rearrangements Inspired by the Biosynthesis of Polycyclic Polyprenylated Acylphloroglucinols
Structurally unique natural products pose biosynthetic puzzles whose solution can inspire new chemical reactions. Herein, we propose a unified biosynthetic pathway towards some complex meroterpenoids—the hyperireflexolides, biyoulactones, hybeanones and hypermonones. This hypothesis led to the disco...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541541/ https://www.ncbi.nlm.nih.gov/pubmed/35680561 http://dx.doi.org/10.1002/anie.202203311 |
Sumario: | Structurally unique natural products pose biosynthetic puzzles whose solution can inspire new chemical reactions. Herein, we propose a unified biosynthetic pathway towards some complex meroterpenoids—the hyperireflexolides, biyoulactones, hybeanones and hypermonones. This hypothesis led to the discovery of uncatalyzed, intramolecular carbonyl‐ene reactions that are spontaneous at room temperature. We also developed an anionic cascade reaction featuring an α‐hydroxy‐β‐diketone rearrangement and an intramolecular aldol reaction to access four distinct natural product scaffolds from a common intermediate. |
---|