Cargando…

Dihydroartemisinin protects blood–brain barrier permeability during sepsis by inhibiting the transcription factor SNAI1

Blood–brain barrier (BBB) injury is involved in the pathogenesis of sepsis‐associated encephalopathy. In this study, we used dihydroartemisinin (DHA), a derivative of artemisinin, to treat a cecal ligation and puncture (CLP)‐induced mouse sepsis model and a tumour necrosis factor α (TNF‐α)‐stimulate...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Fuhong, Liu, Jing, Xiang, Hongjie, Sun, Zongguo, Li, Yan, Li, Xiao, Liu, Yanjun, Liu, Ju
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543489/
https://www.ncbi.nlm.nih.gov/pubmed/35651290
http://dx.doi.org/10.1111/1440-1681.13683
Descripción
Sumario:Blood–brain barrier (BBB) injury is involved in the pathogenesis of sepsis‐associated encephalopathy. In this study, we used dihydroartemisinin (DHA), a derivative of artemisinin, to treat a cecal ligation and puncture (CLP)‐induced mouse sepsis model and a tumour necrosis factor α (TNF‐α)‐stimulated human cerebral microvessel endothelial cells (hCMEC)/D3 cell line. We found that DHA decreased BBB permeability and increased the expression of the tight junction protein occludin (OCLN) in the CLP model. In hCMEC/D3 cells, DHA decreased TNF‐α‐induced hyperpermeability and increased the expression of OCLN. DHA also repressed SNAI1 expression in the CLP mouse model and in TNF‐α‐stimulated hCMEC/D3 cells. These data suggest that DHA protects BBB permeability during sepsis by stimulating the expression of OCLN, by downregulating the expression of the SNAI1 transcription factor.