Cargando…
A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress
Partial loss-of-function mutations in glycosylation pathways underlie a set of rare diseases called Congenital Disorders of Glycosylation (CDGs). In particular, DPAGT1-CDG is caused by mutations in the gene encoding the first step in N-glycosylation, DPAGT1, and this disorder currently lacks effecti...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543880/ https://www.ncbi.nlm.nih.gov/pubmed/36166480 http://dx.doi.org/10.1371/journal.pgen.1010430 |
_version_ | 1784804475298381824 |
---|---|
author | Dalton, Hans M. Viswanatha, Raghuvir Brathwaite, Roderick Zuno, Jae Sophia Berman, Alexys R. Rushforth, Rebekah Mohr, Stephanie E. Perrimon, Norbert Chow, Clement Y. |
author_facet | Dalton, Hans M. Viswanatha, Raghuvir Brathwaite, Roderick Zuno, Jae Sophia Berman, Alexys R. Rushforth, Rebekah Mohr, Stephanie E. Perrimon, Norbert Chow, Clement Y. |
author_sort | Dalton, Hans M. |
collection | PubMed |
description | Partial loss-of-function mutations in glycosylation pathways underlie a set of rare diseases called Congenital Disorders of Glycosylation (CDGs). In particular, DPAGT1-CDG is caused by mutations in the gene encoding the first step in N-glycosylation, DPAGT1, and this disorder currently lacks effective therapies. To identify potential therapeutic targets for DPAGT1-CDG, we performed CRISPR knockout screens in Drosophila cells for genes associated with better survival and glycoprotein levels under DPAGT1 inhibition. We identified hundreds of candidate genes that may be of therapeutic benefit. Intriguingly, inhibition of the mannosyltransferase Dpm1, or its downstream glycosylation pathways, could rescue two in vivo models of DPAGT1 inhibition and ER stress, even though impairment of these pathways alone usually causes CDGs. While both in vivo models ostensibly cause cellular stress (through DPAGT1 inhibition or a misfolded protein), we found a novel difference in fructose metabolism that may indicate glycolysis as a modulator of DPAGT1-CDG. Our results provide new therapeutic targets for DPAGT1-CDG, include the unique finding of Dpm1-related pathways rescuing DPAGT1 inhibition, and reveal a novel interaction between fructose metabolism and ER stress. |
format | Online Article Text |
id | pubmed-9543880 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-95438802022-10-08 A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress Dalton, Hans M. Viswanatha, Raghuvir Brathwaite, Roderick Zuno, Jae Sophia Berman, Alexys R. Rushforth, Rebekah Mohr, Stephanie E. Perrimon, Norbert Chow, Clement Y. PLoS Genet Research Article Partial loss-of-function mutations in glycosylation pathways underlie a set of rare diseases called Congenital Disorders of Glycosylation (CDGs). In particular, DPAGT1-CDG is caused by mutations in the gene encoding the first step in N-glycosylation, DPAGT1, and this disorder currently lacks effective therapies. To identify potential therapeutic targets for DPAGT1-CDG, we performed CRISPR knockout screens in Drosophila cells for genes associated with better survival and glycoprotein levels under DPAGT1 inhibition. We identified hundreds of candidate genes that may be of therapeutic benefit. Intriguingly, inhibition of the mannosyltransferase Dpm1, or its downstream glycosylation pathways, could rescue two in vivo models of DPAGT1 inhibition and ER stress, even though impairment of these pathways alone usually causes CDGs. While both in vivo models ostensibly cause cellular stress (through DPAGT1 inhibition or a misfolded protein), we found a novel difference in fructose metabolism that may indicate glycolysis as a modulator of DPAGT1-CDG. Our results provide new therapeutic targets for DPAGT1-CDG, include the unique finding of Dpm1-related pathways rescuing DPAGT1 inhibition, and reveal a novel interaction between fructose metabolism and ER stress. Public Library of Science 2022-09-27 /pmc/articles/PMC9543880/ /pubmed/36166480 http://dx.doi.org/10.1371/journal.pgen.1010430 Text en © 2022 Dalton et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Dalton, Hans M. Viswanatha, Raghuvir Brathwaite, Roderick Zuno, Jae Sophia Berman, Alexys R. Rushforth, Rebekah Mohr, Stephanie E. Perrimon, Norbert Chow, Clement Y. A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress |
title | A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress |
title_full | A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress |
title_fullStr | A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress |
title_full_unstemmed | A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress |
title_short | A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress |
title_sort | genome-wide crispr screen identifies dpm1 as a modifier of dpagt1 deficiency and er stress |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543880/ https://www.ncbi.nlm.nih.gov/pubmed/36166480 http://dx.doi.org/10.1371/journal.pgen.1010430 |
work_keys_str_mv | AT daltonhansm agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress AT viswanatharaghuvir agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress AT brathwaiteroderick agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress AT zunojaesophia agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress AT bermanalexysr agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress AT rushforthrebekah agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress AT mohrstephaniee agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress AT perrimonnorbert agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress AT chowclementy agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress AT daltonhansm genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress AT viswanatharaghuvir genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress AT brathwaiteroderick genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress AT zunojaesophia genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress AT bermanalexysr genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress AT rushforthrebekah genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress AT mohrstephaniee genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress AT perrimonnorbert genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress AT chowclementy genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress |