Cargando…

A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress

Partial loss-of-function mutations in glycosylation pathways underlie a set of rare diseases called Congenital Disorders of Glycosylation (CDGs). In particular, DPAGT1-CDG is caused by mutations in the gene encoding the first step in N-glycosylation, DPAGT1, and this disorder currently lacks effecti...

Descripción completa

Detalles Bibliográficos
Autores principales: Dalton, Hans M., Viswanatha, Raghuvir, Brathwaite, Roderick, Zuno, Jae Sophia, Berman, Alexys R., Rushforth, Rebekah, Mohr, Stephanie E., Perrimon, Norbert, Chow, Clement Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543880/
https://www.ncbi.nlm.nih.gov/pubmed/36166480
http://dx.doi.org/10.1371/journal.pgen.1010430
_version_ 1784804475298381824
author Dalton, Hans M.
Viswanatha, Raghuvir
Brathwaite, Roderick
Zuno, Jae Sophia
Berman, Alexys R.
Rushforth, Rebekah
Mohr, Stephanie E.
Perrimon, Norbert
Chow, Clement Y.
author_facet Dalton, Hans M.
Viswanatha, Raghuvir
Brathwaite, Roderick
Zuno, Jae Sophia
Berman, Alexys R.
Rushforth, Rebekah
Mohr, Stephanie E.
Perrimon, Norbert
Chow, Clement Y.
author_sort Dalton, Hans M.
collection PubMed
description Partial loss-of-function mutations in glycosylation pathways underlie a set of rare diseases called Congenital Disorders of Glycosylation (CDGs). In particular, DPAGT1-CDG is caused by mutations in the gene encoding the first step in N-glycosylation, DPAGT1, and this disorder currently lacks effective therapies. To identify potential therapeutic targets for DPAGT1-CDG, we performed CRISPR knockout screens in Drosophila cells for genes associated with better survival and glycoprotein levels under DPAGT1 inhibition. We identified hundreds of candidate genes that may be of therapeutic benefit. Intriguingly, inhibition of the mannosyltransferase Dpm1, or its downstream glycosylation pathways, could rescue two in vivo models of DPAGT1 inhibition and ER stress, even though impairment of these pathways alone usually causes CDGs. While both in vivo models ostensibly cause cellular stress (through DPAGT1 inhibition or a misfolded protein), we found a novel difference in fructose metabolism that may indicate glycolysis as a modulator of DPAGT1-CDG. Our results provide new therapeutic targets for DPAGT1-CDG, include the unique finding of Dpm1-related pathways rescuing DPAGT1 inhibition, and reveal a novel interaction between fructose metabolism and ER stress.
format Online
Article
Text
id pubmed-9543880
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-95438802022-10-08 A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress Dalton, Hans M. Viswanatha, Raghuvir Brathwaite, Roderick Zuno, Jae Sophia Berman, Alexys R. Rushforth, Rebekah Mohr, Stephanie E. Perrimon, Norbert Chow, Clement Y. PLoS Genet Research Article Partial loss-of-function mutations in glycosylation pathways underlie a set of rare diseases called Congenital Disorders of Glycosylation (CDGs). In particular, DPAGT1-CDG is caused by mutations in the gene encoding the first step in N-glycosylation, DPAGT1, and this disorder currently lacks effective therapies. To identify potential therapeutic targets for DPAGT1-CDG, we performed CRISPR knockout screens in Drosophila cells for genes associated with better survival and glycoprotein levels under DPAGT1 inhibition. We identified hundreds of candidate genes that may be of therapeutic benefit. Intriguingly, inhibition of the mannosyltransferase Dpm1, or its downstream glycosylation pathways, could rescue two in vivo models of DPAGT1 inhibition and ER stress, even though impairment of these pathways alone usually causes CDGs. While both in vivo models ostensibly cause cellular stress (through DPAGT1 inhibition or a misfolded protein), we found a novel difference in fructose metabolism that may indicate glycolysis as a modulator of DPAGT1-CDG. Our results provide new therapeutic targets for DPAGT1-CDG, include the unique finding of Dpm1-related pathways rescuing DPAGT1 inhibition, and reveal a novel interaction between fructose metabolism and ER stress. Public Library of Science 2022-09-27 /pmc/articles/PMC9543880/ /pubmed/36166480 http://dx.doi.org/10.1371/journal.pgen.1010430 Text en © 2022 Dalton et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Dalton, Hans M.
Viswanatha, Raghuvir
Brathwaite, Roderick
Zuno, Jae Sophia
Berman, Alexys R.
Rushforth, Rebekah
Mohr, Stephanie E.
Perrimon, Norbert
Chow, Clement Y.
A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress
title A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress
title_full A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress
title_fullStr A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress
title_full_unstemmed A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress
title_short A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress
title_sort genome-wide crispr screen identifies dpm1 as a modifier of dpagt1 deficiency and er stress
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543880/
https://www.ncbi.nlm.nih.gov/pubmed/36166480
http://dx.doi.org/10.1371/journal.pgen.1010430
work_keys_str_mv AT daltonhansm agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT viswanatharaghuvir agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT brathwaiteroderick agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT zunojaesophia agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT bermanalexysr agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT rushforthrebekah agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT mohrstephaniee agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT perrimonnorbert agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT chowclementy agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT daltonhansm genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT viswanatharaghuvir genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT brathwaiteroderick genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT zunojaesophia genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT bermanalexysr genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT rushforthrebekah genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT mohrstephaniee genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT perrimonnorbert genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT chowclementy genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress