Cargando…
Generating and testing the efficacy of transgenic Cas9 in Tribolium castaneum
CRISPR/Cas9 genome editing has now expanded to many insect species, including Tribolium castaneum. However, compared to Drosophila melanogaster, the CRISPR toolkit of T. castaneum is limited. A particularly apparent gap is the lack of Cas9 transgenic animals, which generally offer higher editing eff...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544626/ https://www.ncbi.nlm.nih.gov/pubmed/35429082 http://dx.doi.org/10.1111/imb.12778 |
Sumario: | CRISPR/Cas9 genome editing has now expanded to many insect species, including Tribolium castaneum. However, compared to Drosophila melanogaster, the CRISPR toolkit of T. castaneum is limited. A particularly apparent gap is the lack of Cas9 transgenic animals, which generally offer higher editing efficiency. We address this by creating and testing transgenic beetles expressing Cas9. We generated two different constructs bearing basal heat shock promoter‐driven Cas9, two distinct 3′ UTRs, and one containing Cas9 fused to EGFP by a T2A peptide. Analyses of Cas9 activity in each transgenic line demonstrated that both designs are capable of inducing CRISPR‐ mediated changes in the genome in the absence of heat induction. Overall, these resources enhance the accessibility of CRISPR/Cas9 genome editing for the Tribolium research community and provide a benchmark against which to compare future transgenic Cas9 lines. |
---|