Cargando…

Human pharmacokinetics of XBD173 and etifoxine distinguish their potential for pharmacodynamic effects mediated by translocator protein

XBD173 and etifoxine are translocator protein (TSPO) ligands that modulate inflammatory responses in preclinical models. Limited human pharmacokinetic data is available for either molecule, and the binding affinity of etifoxine for human TSPO is unknown. To allow for design of human challenge experi...

Descripción completa

Detalles Bibliográficos
Autores principales: Owen, David R., Phillips, Alexandra, O’Connor, Desmond, Grey, Gabrielle, Aimola, Lina, Nicholas, Richard, Matthews, Paul M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9545781/
https://www.ncbi.nlm.nih.gov/pubmed/35524344
http://dx.doi.org/10.1111/bcp.15392
Descripción
Sumario:XBD173 and etifoxine are translocator protein (TSPO) ligands that modulate inflammatory responses in preclinical models. Limited human pharmacokinetic data is available for either molecule, and the binding affinity of etifoxine for human TSPO is unknown. To allow for design of human challenge experiments, we derived pharmacokinetic data for orally administered etifoxine (50 mg 3 times daily) and XBD173 (90 mg once daily) and determined the binding affinity of etifoxine for TSPO. For XBD173, maximum plasma concentration and free fraction measurements predicted a maximal free concentration of 1.0 nM, which is similar to XBD173 binding affinity. For etifoxine, maximum plasma concentration and free fraction measurements predicted a maximal free concentration of 0.31 nM, substantially lower than the K ( i ) for etifoxine in human brain derived here (7.8 μM, 95% CI 4.5–14.6 μM). We conclude that oral XBD173 dosing at 90 mg once daily will achieve pharmacologically relevant TSPO occupancy. However, the occupancy is too low for TSPO mediated effects after oral dosing of etifoxine at 50 mg 3 times daily.