Cargando…
LOXL2-dependent deacetylation of aldolase A induces metabolic reprogramming and tumor progression()
Lysyl-oxidase like-2 (LOXL2) regulates extracellular matrix remodeling and promotes tumor invasion and metastasis. Altered metabolism is a core hallmark of cancer, however, it remains unclear whether and how LOXL2 contributes to tumor metabolism. Here, we found that LOXL2 and its catalytically inact...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547286/ https://www.ncbi.nlm.nih.gov/pubmed/36209516 http://dx.doi.org/10.1016/j.redox.2022.102496 |
_version_ | 1784805231931949056 |
---|---|
author | Jiao, Ji-Wei Zhan, Xiu-Hui Wang, Juan-Juan He, Li-Xia Guo, Zhen-Chang Xu, Xiu-E Liao, Lian-Di Huang, Xin Wen, Bing Xu, Yi-Wei Hu, Hai Neufeld, Gera Chang, Zhi-Jie Zhang, Kai Xu, Li-Yan Li, En-Min |
author_facet | Jiao, Ji-Wei Zhan, Xiu-Hui Wang, Juan-Juan He, Li-Xia Guo, Zhen-Chang Xu, Xiu-E Liao, Lian-Di Huang, Xin Wen, Bing Xu, Yi-Wei Hu, Hai Neufeld, Gera Chang, Zhi-Jie Zhang, Kai Xu, Li-Yan Li, En-Min |
author_sort | Jiao, Ji-Wei |
collection | PubMed |
description | Lysyl-oxidase like-2 (LOXL2) regulates extracellular matrix remodeling and promotes tumor invasion and metastasis. Altered metabolism is a core hallmark of cancer, however, it remains unclear whether and how LOXL2 contributes to tumor metabolism. Here, we found that LOXL2 and its catalytically inactive L2Δ13 splice variant boost glucose metabolism of esophageal tumor cells, facilitate tumor cell proliferation and promote tumor development in vivo. Consistently, integrated transcriptomic and metabolomic analysis of a knock-in mouse model expressing L2Δ13 gene revealed that LOXL2/L2Δ13 overexpression perturbs glucose and lipid metabolism. Mechanistically, we identified aldolase A, glyceraldehyde-3-phosphate dehydrogenase and enolase as glycolytic proteins that interact physically with LOXL2 and L2Δ13. In the case of aldolase A, LOXL2/L2Δ13 stimulated its mobilization from the actin cytoskeleton to enhance aldolase activity during malignant transformation. Using stable isotope labeling of amino acids in cell culture (SILAC) followed by proteomic analysis, we identified LOXL2 and L2Δ13 as novel deacetylases that trigger metabolic reprogramming. Both LOXL2 and L2Δ13 directly catalyzed the deacetylation of aldolase A at K13, resulting in enhanced glycolysis which subsequently reprogramed tumor metabolism and promoted tumor progression. High level expression of LOXL2/L2Δ13 combined with decreased acetylation of aldolase-K13 predicted poor clinical outcome in patients with esophageal cancer. In summary, we have characterized a novel molecular mechanism that mediates the pro-tumorigenic activity of LOXL2 independently of its classical amine oxidase activity. These findings may enable the future development of therapeutic agents targeting the metabolic machinery via LOXL2 or L2Δ13. HIGHLIGHT OF THE STUDY: LOXL2 and its catalytically inactive isoform L2Δ13 function as new deacetylases to promote metabolic reprogramming and tumor progression in esophageal cancer by directly activating glycolytic enzymes such as aldolase A. |
format | Online Article Text |
id | pubmed-9547286 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-95472862022-10-09 LOXL2-dependent deacetylation of aldolase A induces metabolic reprogramming and tumor progression() Jiao, Ji-Wei Zhan, Xiu-Hui Wang, Juan-Juan He, Li-Xia Guo, Zhen-Chang Xu, Xiu-E Liao, Lian-Di Huang, Xin Wen, Bing Xu, Yi-Wei Hu, Hai Neufeld, Gera Chang, Zhi-Jie Zhang, Kai Xu, Li-Yan Li, En-Min Redox Biol Research Paper Lysyl-oxidase like-2 (LOXL2) regulates extracellular matrix remodeling and promotes tumor invasion and metastasis. Altered metabolism is a core hallmark of cancer, however, it remains unclear whether and how LOXL2 contributes to tumor metabolism. Here, we found that LOXL2 and its catalytically inactive L2Δ13 splice variant boost glucose metabolism of esophageal tumor cells, facilitate tumor cell proliferation and promote tumor development in vivo. Consistently, integrated transcriptomic and metabolomic analysis of a knock-in mouse model expressing L2Δ13 gene revealed that LOXL2/L2Δ13 overexpression perturbs glucose and lipid metabolism. Mechanistically, we identified aldolase A, glyceraldehyde-3-phosphate dehydrogenase and enolase as glycolytic proteins that interact physically with LOXL2 and L2Δ13. In the case of aldolase A, LOXL2/L2Δ13 stimulated its mobilization from the actin cytoskeleton to enhance aldolase activity during malignant transformation. Using stable isotope labeling of amino acids in cell culture (SILAC) followed by proteomic analysis, we identified LOXL2 and L2Δ13 as novel deacetylases that trigger metabolic reprogramming. Both LOXL2 and L2Δ13 directly catalyzed the deacetylation of aldolase A at K13, resulting in enhanced glycolysis which subsequently reprogramed tumor metabolism and promoted tumor progression. High level expression of LOXL2/L2Δ13 combined with decreased acetylation of aldolase-K13 predicted poor clinical outcome in patients with esophageal cancer. In summary, we have characterized a novel molecular mechanism that mediates the pro-tumorigenic activity of LOXL2 independently of its classical amine oxidase activity. These findings may enable the future development of therapeutic agents targeting the metabolic machinery via LOXL2 or L2Δ13. HIGHLIGHT OF THE STUDY: LOXL2 and its catalytically inactive isoform L2Δ13 function as new deacetylases to promote metabolic reprogramming and tumor progression in esophageal cancer by directly activating glycolytic enzymes such as aldolase A. Elsevier 2022-10-03 /pmc/articles/PMC9547286/ /pubmed/36209516 http://dx.doi.org/10.1016/j.redox.2022.102496 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Paper Jiao, Ji-Wei Zhan, Xiu-Hui Wang, Juan-Juan He, Li-Xia Guo, Zhen-Chang Xu, Xiu-E Liao, Lian-Di Huang, Xin Wen, Bing Xu, Yi-Wei Hu, Hai Neufeld, Gera Chang, Zhi-Jie Zhang, Kai Xu, Li-Yan Li, En-Min LOXL2-dependent deacetylation of aldolase A induces metabolic reprogramming and tumor progression() |
title | LOXL2-dependent deacetylation of aldolase A induces metabolic reprogramming and tumor progression() |
title_full | LOXL2-dependent deacetylation of aldolase A induces metabolic reprogramming and tumor progression() |
title_fullStr | LOXL2-dependent deacetylation of aldolase A induces metabolic reprogramming and tumor progression() |
title_full_unstemmed | LOXL2-dependent deacetylation of aldolase A induces metabolic reprogramming and tumor progression() |
title_short | LOXL2-dependent deacetylation of aldolase A induces metabolic reprogramming and tumor progression() |
title_sort | loxl2-dependent deacetylation of aldolase a induces metabolic reprogramming and tumor progression() |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547286/ https://www.ncbi.nlm.nih.gov/pubmed/36209516 http://dx.doi.org/10.1016/j.redox.2022.102496 |
work_keys_str_mv | AT jiaojiwei loxl2dependentdeacetylationofaldolaseainducesmetabolicreprogrammingandtumorprogression AT zhanxiuhui loxl2dependentdeacetylationofaldolaseainducesmetabolicreprogrammingandtumorprogression AT wangjuanjuan loxl2dependentdeacetylationofaldolaseainducesmetabolicreprogrammingandtumorprogression AT helixia loxl2dependentdeacetylationofaldolaseainducesmetabolicreprogrammingandtumorprogression AT guozhenchang loxl2dependentdeacetylationofaldolaseainducesmetabolicreprogrammingandtumorprogression AT xuxiue loxl2dependentdeacetylationofaldolaseainducesmetabolicreprogrammingandtumorprogression AT liaoliandi loxl2dependentdeacetylationofaldolaseainducesmetabolicreprogrammingandtumorprogression AT huangxin loxl2dependentdeacetylationofaldolaseainducesmetabolicreprogrammingandtumorprogression AT wenbing loxl2dependentdeacetylationofaldolaseainducesmetabolicreprogrammingandtumorprogression AT xuyiwei loxl2dependentdeacetylationofaldolaseainducesmetabolicreprogrammingandtumorprogression AT huhai loxl2dependentdeacetylationofaldolaseainducesmetabolicreprogrammingandtumorprogression AT neufeldgera loxl2dependentdeacetylationofaldolaseainducesmetabolicreprogrammingandtumorprogression AT changzhijie loxl2dependentdeacetylationofaldolaseainducesmetabolicreprogrammingandtumorprogression AT zhangkai loxl2dependentdeacetylationofaldolaseainducesmetabolicreprogrammingandtumorprogression AT xuliyan loxl2dependentdeacetylationofaldolaseainducesmetabolicreprogrammingandtumorprogression AT lienmin loxl2dependentdeacetylationofaldolaseainducesmetabolicreprogrammingandtumorprogression |