Cargando…
Systematic evaluation of tumor microenvironment and construction of a machine learning model to predict prognosis and immunotherapy efficacy in triple-negative breast cancer based on data mining and sequencing validation
Background: The role of the tumor microenvironment (TME) in predicting prognosis and therapeutic efficacy has been demonstrated. Nonetheless, no systematic studies have focused on TME patterns or their function in the effectiveness of immunotherapy in triple-negative breast cancer. Methods: We compr...
Autores principales: | Gou, Qiheng, Liu, Zijian, Xie, Yuxin, Deng, Yulan, Ma, Ji, Li, Jiangping, Zheng, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9548553/ https://www.ncbi.nlm.nih.gov/pubmed/36225561 http://dx.doi.org/10.3389/fphar.2022.995555 |
Ejemplares similares
-
The role of BRCA status on prognosis in patients with triple-negative breast cancer
por: Xie, Yuxin, et al.
Publicado: (2017) -
Integrating machine learning to construct aberrant alternative splicing event related classifiers to predict prognosis and immunotherapy response in patients with hepatocellular carcinoma
por: Liu, Wangrui, et al.
Publicado: (2022) -
Immunoadjuvant Nanoparticles as Trojan Horses for Enhanced Photo-Immunotherapy in the Treatment of Triple-Negative Breast Cancer
por: Wu, Jinxian, et al.
Publicado: (2022) -
CXCR2 Small-Molecule Antagonist Combats Chemoresistance and Enhances Immunotherapy in Triple-Negative Breast Cancer
por: Ghallab, Alaa M., et al.
Publicado: (2022) -
A novel model associated with tumor microenvironment on predicting prognosis and immunotherapy in triple negative breast cancer
por: Zhang, Juan, et al.
Publicado: (2023)